Timezone: »
The COVID-19 global pandemic has disrupted nearly all aspects of modern life. This year NeurIPS will host a symposium on COVID-19 to frame challenges and opportunities for the machine learning community and to foster a frank discussion on the role of machine learning. A central focus of this symposium will be clearly outlining key areas where machine learning is and is not likely to make a substantive impact. The one-day event will feature talks from leading epidemiologists, biotech leaders, policy makers, and global health experts. Attendees of this symposium will gain a deeper understanding of the current state of the COVID-19 pandemic, challenges and limitations for current machine learning capabilities, how machine learning is accelerating COVID-19 vaccine development, and possible ways machine learning may aid in the present and future pandemics.
Tue 12:00 p.m. - 12:15 p.m.
|
Opening remarks
(
Introduction to COVID-19 Symposium
)
|
🔗 |
Tue 12:15 p.m. - 12:50 p.m.
|
COVID-19: Can we test our way out of this?
(
Invited Talk
)
SlidesLive Video » |
Michael Mina 🔗 |
Tue 12:50 p.m. - 1:00 p.m.
|
COVID-19: Can we test our way out of this? Q&A
(
Live Q&A
)
|
🔗 |
Tue 1:00 p.m. - 1:35 p.m.
|
A Journey Through the Disorderly World of Diagnostic and Prognostic Models for COVID-19
(
Invited Talk
)
SlidesLive Video » |
Laure Wynants 🔗 |
Tue 1:35 p.m. - 1:45 p.m.
|
Wynats Q&A
(
Speaker Q&A
)
|
🔗 |
Tue 1:45 p.m. - 2:20 p.m.
|
Mobility network models of COVID-19 explain inequities and inform reopening
(
Invited Talk
)
SlidesLive Video » |
Emma Pierson 🔗 |
Tue 2:20 p.m. - 2:30 p.m.
|
Emma Pierson Q&A
(
Q&A
)
|
🔗 |
Tue 2:30 p.m. - 2:04 p.m.
|
When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and Policy Assessment using Compartmental Gaussian Processes
(
Spotlight
)
SlidesLive Video » |
Zhaozhi Qian 🔗 |
Tue 2:34 p.m. - 2:38 p.m.
|
Modern Hopfield Networks and Attention for Immune Repertoire Classification
(
Spotlight
)
SlidesLive Video » |
Michael Widrich 🔗 |
Tue 2:38 p.m. - 2:42 p.m.
|
The Devil is in the Detail: A Framework for Macroscopic Prediction via Microscopic Models
(
Spotlight
)
SlidesLive Video » |
Yingxiang Yang 🔗 |
Tue 2:42 p.m. - 2:46 p.m.
|
How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19?
(
Spotlight
)
SlidesLive Video » |
Sören Mindermann · Mrinank Sharma · Jan Brauner 🔗 |
Tue 2:46 p.m. - 2:50 p.m.
|
Interpretable Sequence Learning for Covid-19 Forecasting
(
Spotlight
)
SlidesLive Video » |
Sercan Arik 🔗 |
Tue 2:50 p.m. - 2:54 p.m.
|
CogMol: Target-Specific and Selective Drug Design for COVID-19 Using Deep Generative Models
(
Spotlight
)
SlidesLive Video » |
Payel Das 🔗 |
Tue 2:54 p.m. - 2:58 p.m.
|
Deep Direct Likelihood Knockoffs
(
Spotlight
)
SlidesLive Video » |
Mukund Sudarshan 🔗 |
Tue 2:58 p.m. - 3:02 p.m.
|
Temporal Positive-unlabeled Learning for Biomedical Hypothesis Generation via Risk Estimation
(
Spotlight
)
SlidesLive Video » |
Uchenna Akujuobi 🔗 |
Author Information
Andrew Beam (Harvard)
Tristan Naumann (Microsoft Research)
Katherine Heller (Duke)
Elaine Nsoesie (Boston University School of Medecine)
More from the Same Authors
-
2021 : Maintaining fairness across distribution shifts: do we have viable solutions for real-world applications? »
Jessica Schrouff · Natalie Harris · Sanmi Koyejo · Ibrahim Alabdulmohsin · Eva Schnider · Diana Mincu · Christina Chen · Awa Dieng · Yuan Liu · Vivek Natarajan · Katherine Heller · Alexander D'Amour -
2022 : Efficient Hospital Management via Length of Stay prediction using Domain Adaptation »
Lyse Naomi Wamba · Nyalleng Moorosi · Elaine Nsoesie · Frank Rademakers · Bart DeMoor -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Berk Ustun · Chirag Nagpal · Katherine Heller -
2023 Poster: Participatory Personalization in Classification »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2023 Poster: LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day »
Chunyuan Li · Cliff Wong · Sheng Zhang · Naoto Usuyama · Haotian Liu · Jianwei Yang · Tristan Naumann · Hoifung Poon · Jianfeng Gao -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 : Participatory Systems for Personalized Prediction »
Hailey James · Chirag Nagpal · Katherine Heller · Berk Ustun -
2022 Poster: Diagnosing failures of fairness transfer across distribution shift in real-world medical settings »
Jessica Schrouff · Natalie Harris · Sanmi Koyejo · Ibrahim Alabdulmohsin · Eva Schnider · Krista Opsahl-Ong · Alexander Brown · Subhrajit Roy · Diana Mincu · Christina Chen · Awa Dieng · Yuan Liu · Vivek Natarajan · Alan Karthikesalingam · Katherine Heller · Silvia Chiappa · Alexander D'Amour -
2022 Poster: Deep Learning Methods for Proximal Inference via Maximum Moment Restriction »
Benjamin Kompa · David Bellamy · Tom Kolokotrones · james m robins · Andrew Beam -
2021 : What are “meaningful” ML datasets and the opportunities and challenges in creating them? »
Judy Wawira · Matthew Lungren · Elaine Nsoesie · Ari Robicsek -
2020 : Discussion Panel with Amanda Coston »
Amanda Coston · Elaine Nsoesie · Catherine Nakalembe · Santiago Saavedra · Xiaoxiang Zhu · Ernest Mwebaze -
2020 : Live QA with Elaine Nsoesie »
Elaine Nsoesie -
2020 : Invited Talk 3: Using Search Data to Inform Public Health in Africa »
Elaine Nsoesie -
2020 Workshop: Machine Learning for Mobile Health »
Joseph Futoma · Walter Dempsey · Katherine Heller · Yian Ma · Nicholas Foti · Marianne Njifon · Kelly Zhang · Jieru Shi -
2020 Workshop: Machine Learning for Health (ML4H): Advancing Healthcare for All »
Stephanie Hyland · Allen Schmaltz · Charles Onu · Ehi Nosakhare · Emily Alsentzer · Irene Y Chen · Matthew McDermott · Subhrajit Roy · Benjamin Akera · Dani Kiyasseh · Fabian Falck · Griffin Adams · Ioana Bica · Oliver J Bear Don't Walk IV · Suproteem Sarkar · Stephen Pfohl · Andrew Beam · Brett Beaulieu-Jones · Danielle Belgrave · Tristan Naumann -
2020 Symposium: COVID-19 Symposium Day 2 »
Andrew Beam · Tristan Naumann · Katherine Heller · Elaine Nsoesie -
2020 Session: Orals & Spotlights Track 02: COVID/Health/Bio Applications »
Tristan Naumann · James Zou -
2019 Workshop: Machine Learning for Health (ML4H): What makes machine learning in medicine different? »
Andrew Beam · Tristan Naumann · Brett Beaulieu-Jones · Irene Y Chen · Madalina Fiterau · Samuel Finlayson · Emily Alsentzer · Adrian Dalca · Matthew McDermott -
2019 Poster: Reconciling meta-learning and continual learning with online mixtures of tasks »
Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller -
2019 Spotlight: Reconciling meta-learning and continual learning with online mixtures of tasks »
Ghassen Jerfel · Erin Grant · Tom Griffiths · Katherine Heller -
2018 : Katherine Heller »
Katherine Heller -
2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen -
2017 : Panel: On the Foundations and Future of Approximate Inference »
David Blei · Zoubin Ghahramani · Katherine Heller · Tim Salimans · Max Welling · Matthew D. Hoffman -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2017 Poster: An inner-loop free solution to inverse problems using deep neural networks »
Kai Fan · Qi Wei · Lawrence Carin · Katherine Heller -
2015 Poster: Parallelizing MCMC with Random Partition Trees »
Xiangyu Wang · Fangjian Guo · Katherine Heller · David B Dunson -
2015 Poster: Fast Second Order Stochastic Backpropagation for Variational Inference »
Kai Fan · Ziteng Wang · Jeff Beck · James Kwok · Katherine Heller -
2012 Poster: Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models »
Jeff Beck · Katherine Heller · Alexandre Pouget -
2012 Spotlight: Complex Inference in Neural Circuits with Probabilistic Population Codes and Topic Models »
Jeff Beck · Katherine Heller · Alexandre Pouget -
2012 Poster: Modelling Reciprocating Relationships with Hawkes processes »
Charles Blundell · Katherine Heller · Jeff Beck -
2012 Session: Oral Session 7 »
Katherine Heller -
2012 Spotlight: Modelling Reciprocating Relationships with Hawkes processes »
Charles Blundell · Katherine Heller · Jeff Beck -
2011 Poster: Testing a Bayesian Measure of Representativeness Using a Large Image Database »
Joshua T Abbott · Katherine Heller · Zoubin Ghahramani · Tom Griffiths -
2011 Session: Oral Session 7 »
Katherine Heller -
2010 Session: Spotlights Session 9 »
Katherine Heller -
2010 Session: Oral Session 11 »
Katherine Heller -
2009 Workshop: Applications for Topic Models: Text and Beyond »
David Blei · Jordan Boyd-Graber · Jonathan Chang · Katherine Heller · Hanna Wallach -
2009 Poster: Hierarchical Learning of Dimensional Biases in Human Categorization »
Katherine Heller · Adam Sanborn · Nick Chater -
2009 Spotlight: Hierarchical Learning of Dimensional Biases in Human Categorization »
Katherine Heller · Adam Sanborn · Nick Chater -
2008 Poster: Bayesian Exponential Family PCA »
Shakir Mohamed · Katherine Heller · Zoubin Ghahramani -
2008 Spotlight: Bayesian Exponential Family PCA »
Shakir Mohamed · Katherine Heller · Zoubin Ghahramani