Timezone: »
Contributed Video: PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization, Zhize Li
Zhize Li
Event URL: https://opt-ml.org/papers/2020/paper_76.pdf »
In this paper, we propose a novel stochastic gradient estimator---ProbAbilistic Gradient Estimator (PAGE)---for nonconvex optimization. PAGE is easy to implement as it is designed via a small adjustment to vanilla SGD: in each iteration, PAGE uses the vanilla minibatch SGD update with probability $p$ and reuses the previous gradient with a small adjustment, at a much lower computational cost, with probability $1-p$. We give a simple formula for the optimal choice of $p$. We prove tight lower bounds for nonconvex problems, which are of independent interest. Moreover, we prove matching upper bounds both in the finite-sum and online regimes, which establish that PAGE is an optimal method. Besides, we show that for nonconvex functions satisfying the Polyak-\L ojasiewicz (PL) condition, PAGE can automatically switch to a faster linear convergence rate. Finally, we conduct several deep learning experiments (e.g., LeNet, VGG, ResNet) on real datasets in PyTorch, and the results demonstrate that PAGE not only converges much faster than SGD in training but also achieves the higher test accuracy, validating our theoretical results and confirming the practical superiority of PAGE.
In this paper, we propose a novel stochastic gradient estimator---ProbAbilistic Gradient Estimator (PAGE)---for nonconvex optimization. PAGE is easy to implement as it is designed via a small adjustment to vanilla SGD: in each iteration, PAGE uses the vanilla minibatch SGD update with probability $p$ and reuses the previous gradient with a small adjustment, at a much lower computational cost, with probability $1-p$. We give a simple formula for the optimal choice of $p$. We prove tight lower bounds for nonconvex problems, which are of independent interest. Moreover, we prove matching upper bounds both in the finite-sum and online regimes, which establish that PAGE is an optimal method. Besides, we show that for nonconvex functions satisfying the Polyak-\L ojasiewicz (PL) condition, PAGE can automatically switch to a faster linear convergence rate. Finally, we conduct several deep learning experiments (e.g., LeNet, VGG, ResNet) on real datasets in PyTorch, and the results demonstrate that PAGE not only converges much faster than SGD in training but also achieves the higher test accuracy, validating our theoretical results and confirming the practical superiority of PAGE.
Author Information
Zhize Li (Tsinghua University, and KAUST)
More from the Same Authors
-
2021 : DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization »
Boyue Li · Zhize Li · Yuejie Chi -
2021 : DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization »
Boyue Li · Zhize Li · Yuejie Chi -
2021 : ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method »
Zhize Li -
2021 : EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin · Eduard Gorbunov · Zhize Li -
2022 Poster: BEER: Fast $O(1/T)$ Rate for Decentralized Nonconvex Optimization with Communication Compression »
Haoyu Zhao · Boyue Li · Zhize Li · Peter Richtarik · Yuejie Chi -
2022 Poster: Coresets for Vertical Federated Learning: Regularized Linear Regression and $K$-Means Clustering »
Lingxiao Huang · Zhize Li · Jialin Sun · Haoyu Zhao -
2022 Poster: SoteriaFL: A Unified Framework for Private Federated Learning with Communication Compression »
Zhize Li · Haoyu Zhao · Boyue Li · Yuejie Chi -
2021 : Poster Session 1 (gather.town) »
Hamed Jalali · Robert Hönig · Maximus Mutschler · Manuel Madeira · Abdurakhmon Sadiev · Egor Shulgin · Alasdair Paren · Pascal Esser · Simon Roburin · Julius Kunze · Agnieszka Słowik · Frederik Benzing · Futong Liu · Hongyi Li · Ryotaro Mitsuboshi · Grigory Malinovsky · Jayadev Naram · Zhize Li · Igor Sokolov · Sharan Vaswani -
2021 Poster: CANITA: Faster Rates for Distributed Convex Optimization with Communication Compression »
Zhize Li · Peter Richtarik -
2020 : Poster Session 1 (gather.town) »
Laurent Condat · Tiffany Vlaar · Ohad Shamir · Mohammadi Zaki · Zhize Li · Guan-Horng Liu · Samuel Horváth · Mher Safaryan · Yoni Choukroun · Kumar Shridhar · Nabil Kahale · Jikai Jin · Pratik Kumar Jawanpuria · Gaurav Kumar Yadav · Kazuki Koyama · Junyoung Kim · Xiao Li · Saugata Purkayastha · Adil Salim · Dighanchal Banerjee · Peter Richtarik · Lakshman Mahto · Tian Ye · Bamdev Mishra · Huikang Liu · Jiajie Zhu -
2020 : Contributed talks in Session 1 (Zoom) »
Sebastian Stich · Laurent Condat · Zhize Li · Ohad Shamir · Tiffany Vlaar · Mohammadi Zaki -
2019 Poster: A unified variance-reduced accelerated gradient method for convex optimization »
Guanghui Lan · Zhize Li · Yi Zhou -
2019 Poster: SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points »
Zhize Li