Timezone: »
Health disparities in the United States are one of the largest factors in reducing the health of the population. Disparities means some groups have lower life expectancy, are dying at higher rates from COVID-19, and utilize less mental health services, to name just a few examples. The future of medicine will be based on Artificial Intelligence and new technological platforms that promise to improve outcomes and reduce cost. Our role as AI researchers should be to ensure that these new technologies also reduce health disparities. In this talk I will describe recent work showing how we can work to reduce health disparities in the future of medicine. By ensuring that our task, datasets, algorithms and evaluations are equitable and representative of all types of patients, we can ensure that the research we develop will reduce health disparities.
Author Information
Mark Dredze (Johns Hopkins)
More from the Same Authors
-
2022 : The Importance of Temperature in Multi-Task Optimization »
David Mueller · Mark Dredze · Nicholas Andrews -
2012 Poster: Factorial LDA: Sparse Multi-Dimensional Text Models »
Michael J Paul · Mark Dredze -
2009 Poster: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2009 Spotlight: Adaptive Regularization of Weight Vectors »
Yacov Crammer · Alex Kulesza · Mark Dredze -
2008 Poster: Exact Convex Confidence-Weighted Learning »
Yacov Crammer · Mark Dredze · Fernando Pereira -
2008 Spotlight: Exact Convex Confidence-Weighted Learning »
Yacov Crammer · Mark Dredze · Fernando Pereira