Timezone: »
Title: Growing generalizable, interpretable knowledge with wake-sleep program learning
Abstract: Two challenges in engineering program synthesis systems are: (1) crafting specialized yet expressive domain specific languages, and (2) designing search algorithms that can tractably explore the space of expressions in this domain specific language. We take a step toward the joint learning of domain specific languages, and the search algorithms performs synthesis in that language. We propose an algorithm which starts with a relatively minimal domain specific language, and then enriches that language by compressing out common syntactic patterns into a library of reusable domain specific code. In tandem, the system trains a neural network to guide search over expressions in the growing language. From a machine learning perspective, this system implements a wake-sleep algorithms similar to the Helmholtz machine. We apply this algorithm to AI and program synthesis problems, with the goal of understanding how domain specific languages and neural program synthesizers can mutually bootstrap one another.
Bio: Kevin Ellis works across program synthesis and artificial intelligence. His focuses on using machine learning to develop better program synthesis algorithms, and on applications of program synthesis to graphics and natural language. He recently finished his PhD at MIT coadvised by Josh Tenenbaum and Armando Solar-Lezama, and is working as a research scientist at Common Sense Machines before starting as an assistant professor at Cornell in summer 2021.
Author Information
Kevin Ellis (MIT)
More from the Same Authors
-
2021 : Efficient Pragmatic Program Synthesis with Informative Specifications »
Saujas Vaduguru · Yewen Pu · Kevin Ellis -
2020 : Invited Talk (Kevin Ellis) »
Kevin Ellis -
2020 Poster: Program Synthesis with Pragmatic Communication »
Yewen Pu · Kevin Ellis · Marta Kryven · Josh Tenenbaum · Armando Solar-Lezama -
2020 Poster: Learning abstract structure for drawing by efficient motor program induction »
Lucas Tian · Kevin Ellis · Marta Kryven · Josh Tenenbaum -
2020 Oral: Learning abstract structure for drawing by efficient motor program induction »
Lucas Tian · Kevin Ellis · Marta Kryven · Josh Tenenbaum -
2019 Poster: Write, Execute, Assess: Program Synthesis with a REPL »
Kevin Ellis · Maxwell Nye · Yewen Pu · Felix Sosa · Josh Tenenbaum · Armando Solar-Lezama -
2018 Poster: Learning to Infer Graphics Programs from Hand-Drawn Images »
Kevin Ellis · Daniel Ritchie · Armando Solar-Lezama · Josh Tenenbaum -
2018 Poster: Learning Libraries of Subroutines for Neurally–Guided Bayesian Program Induction »
Kevin Ellis · Lucas Morales · Mathias Sablé-Meyer · Armando Solar-Lezama · Josh Tenenbaum -
2018 Spotlight: Learning to Infer Graphics Programs from Hand-Drawn Images »
Kevin Ellis · Daniel Ritchie · Armando Solar-Lezama · Josh Tenenbaum -
2018 Spotlight: Learning Libraries of Subroutines for Neurally–Guided Bayesian Program Induction »
Kevin Ellis · Lucas Morales · Mathias Sablé-Meyer · Armando Solar-Lezama · Josh Tenenbaum -
2016 Poster: Sampling for Bayesian Program Learning »
Kevin Ellis · Armando Solar-Lezama · Josh Tenenbaum -
2015 Poster: Unsupervised Learning by Program Synthesis »
Kevin Ellis · Armando Solar-Lezama · Josh Tenenbaum