Timezone: »
We propose a novel approach that integrates machine learning into compartmental disease modeling (e.g., SEIR) to predict the progression of COVID-19. Our model is explainable by design as it explicitly shows how different compartments evolve and it uses interpretable encoders to incorporate covariates and improve performance. Explainability is valuable to ensure that the model's forecasts are credible to epidemiologists and to instill confidence in end-users such as policy makers and healthcare institutions. Our model can be applied at different geographic resolutions, and we demonstrate it for states and counties in the United States. We show that our model provides more accurate forecasts compared to the alternatives, and that it provides qualitatively meaningful explanatory insights.
Author Information
Sercan Arik (Google)
Chun-Liang Li (Google)
Jinsung Yoon (Google)
Rajarishi Sinha (Google)
Arkady Epshteyn (Google)
Long Le (Google)
Vikas Menon (Google)
Shashank Singh (CMU/Google)
Leyou Zhang (Google)
Martin Nikoltchev (Google)
Yash Sonthalia (Google)
Hootan Nakhost (Google)
Elli Kanal (Google)
Tomas Pfister (Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: Interpretable Sequence Learning for Covid-19 Forecasting »
Tue. Dec 8th 05:00 -- 07:00 AM Room Poster Session 0 #120
More from the Same Authors
-
2022 : Controlling Commercial Cooling Systems Using Reinforcement Learning »
Jerry Luo · Cosmin Paduraru · Octavian Voicu · Yuri Chervonyi · Scott Munns · Jerry Li · Crystal Qian · Praneet Dutta · Daniel Mankowitz · Jared Quincy Davis · Ningjia Wu · Xingwei Yang · Chu-Ming Chang · Ted Li · Rob Rose · Mingyan Fan · Hootan Nakhost · Tinglin Liu · Deeni Fatiha · Neil Satra · Juliet Rothenberg · Molly Carlin · Satish Tallapaka · Sims Witherspoon · David Parish · Peter Dolan · Chenyu Zhao -
2022 : Controlling Commercial Cooling Systems Using Reinforcement Learning »
Jerry Luo · Cosmin Paduraru · Octavian Voicu · Yuri Chervonyi · Scott Munns · Jerry Li · Crystal Qian · Praneet Dutta · Daniel Mankowitz · Jared Quincy Davis · Ningjia Wu · Xingwei Yang · Chu-Ming Chang · Ted Li · Rob Rose · Mingyan Fan · Hootan Nakhost · Tinglin Liu · Deeni Fatiha · Neil Satra · Juliet Rothenberg · Molly Carlin · Satish Tallapaka · Sims Witherspoon · David Parish · Peter Dolan · Chenyu Zhao -
2022 : Provable Re-Identification Privacy »
Zachary Izzo · Jinsung Yoon · Sercan Arik · James Zou -
2023 Poster: Spuriosity Didn’t Kill the Classifier: Using Invariant Predictions to Harness Spurious Features »
Cian Eastwood · Shashank Singh · Andrei L Nicolicioiu · Marin Vlastelica Pogančić · Julius von Kügelgen · Bernhard Schölkopf -
2022 : Decoding Attention from Gaze: A Benchmark Dataset and End-to-End Models »
Karan Uppal · Jaeah Kim · Shashank Singh -
2022 Poster: Self-Supervised Learning with an Information Maximization Criterion »
Serdar Ozsoy · Shadi Hamdan · Sercan Arik · Deniz Yuret · Alper Erdogan -
2022 Poster: Probable Domain Generalization via Quantile Risk Minimization »
Cian Eastwood · Alexander Robey · Shashank Singh · Julius von Kügelgen · Hamed Hassani · George J. Pappas · Bernhard Schölkopf -
2022 Poster: Optimal Binary Classification Beyond Accuracy »
Shashank Singh · Justin Khim -
2021 Poster: Controlling Neural Networks with Rule Representations »
Sungyong Seo · Sercan Arik · Jinsung Yoon · Xiang Zhang · Kihyuk Sohn · Tomas Pfister -
2020 Poster: FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence »
Kihyuk Sohn · David Berthelot · Nicholas Carlini · Zizhao Zhang · Han Zhang · Colin A Raffel · Ekin Dogus Cubuk · Alexey Kurakin · Chun-Liang Li -
2020 Poster: Differentiable Top-k with Optimal Transport »
Yujia Xie · Hanjun Dai · Minshuo Chen · Bo Dai · Tuo Zhao · Hongyuan Zha · Wei Wei · Tomas Pfister -
2020 Poster: On Completeness-aware Concept-Based Explanations in Deep Neural Networks »
Chih-Kuan Yeh · Been Kim · Sercan Arik · Chun-Liang Li · Tomas Pfister · Pradeep Ravikumar -
2020 : Interpretable Sequence Learning for Covid-19 Forecasting »
Sercan Arik -
2020 Poster: Robust Density Estimation under Besov IPM Losses »
Ananya Uppal · Shashank Singh · Barnabas Poczos -
2020 Spotlight: Robust Density Estimation under Besov IPM Losses »
Ananya Uppal · Shashank Singh · Barnabas Poczos -
2019 Poster: Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses »
Ananya Uppal · Shashank Singh · Barnabas Poczos -
2019 Oral: Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses »
Ananya Uppal · Shashank Singh · Barnabas Poczos -
2018 Poster: Nonparametric Density Estimation under Adversarial Losses »
Shashank Singh · Ananya Uppal · Boyue Li · Chun-Liang Li · Manzil Zaheer · Barnabas Poczos -
2016 Poster: Finite-Sample Analysis of Fixed-k Nearest Neighbor Density Functional Estimators »
Shashank Singh · Barnabas Poczos -
2016 Poster: Efficient Nonparametric Smoothness Estimation »
Shashank Singh · Simon Du · Barnabas Poczos -
2014 Poster: Exponential Concentration of a Density Functional Estimator »
Shashank Singh · Barnabas Poczos