Timezone: »
Fair representation learning provides an effective way of enforcing fairness constraints without compromising utility for downstream users. A desirable family of such fairness constraints, each requiring similar treatment for similar individuals, is known as individual fairness. In this work, we introduce the first method that enables data consumers to obtain certificates of individual fairness for existing and new data points. The key idea is to map similar individuals to close latent representations and leverage this latent proximity to certify individual fairness. That is, our method enables the data producer to learn and certify a representation where for a data point all similar individuals are at l-infinity distance at most epsilon, thus allowing data consumers to certify individual fairness by proving epsilon-robustness of their classifier. Our experimental evaluation on five real-world datasets and several fairness constraints demonstrates the expressivity and scalability of our approach.
Author Information
Anian Ruoss (ETH Zurich)
Mislav Balunovic (ETH Zurich)
Marc Fischer (ETH Zurich)
Martin Vechev (ETH Zurich, Switzerland)
More from the Same Authors
-
2021 : Bayesian Framework for Gradient Leakage »
Mislav Balunovic · Dimitar Dimitrov · Martin Vechev -
2022 : Efficient Robustness Verification of Neural Ordinary Differential Equations »
Mustafa Zeqiri · Mark Müller · Marc Fischer · Martin Vechev -
2022 : Generating Intuitive Fairness Specifications for Natural Language Processing »
Florian E. Dorner · Momchil Peychev · Nikola Konstantinov · Naman Goel · Elliott Ash · Martin Vechev -
2022 : Just Avoid Robust Inaccuracy: Boosting Robustness Without Sacrificing Accuracy »
Yannick Merkli · Pavol Bielik · Petar Tsankov · Martin Vechev -
2022 : Certified Training: Small Boxes are All You Need »
Mark Müller · Franziska Eckert · Marc Fischer · Martin Vechev -
2022 : FARE: Provably Fair Representation Learning »
Nikola Jovanović · Mislav Balunovic · Dimitar Dimitrov · Martin Vechev -
2022 Poster: Learning to Configure Computer Networks with Neural Algorithmic Reasoning »
Luca Beurer-Kellner · Martin Vechev · Laurent Vanbever · Petar Veličković -
2022 Poster: (De-)Randomized Smoothing for Decision Stump Ensembles »
Miklós Horváth · Mark Müller · Marc Fischer · Martin Vechev -
2022 Poster: LAMP: Extracting Text from Gradients with Language Model Priors »
Mislav Balunovic · Dimitar Dimitrov · Nikola Jovanović · Martin Vechev -
2021 Poster: Automated Discovery of Adaptive Attacks on Adversarial Defenses »
Chengyuan Yao · Pavol Bielik · Petar Tsankov · Martin Vechev -
2020 Poster: Certified Defense to Image Transformations via Randomized Smoothing »
Marc Fischer · Maximilian Baader · Martin Vechev -
2019 Poster: Beyond the Single Neuron Convex Barrier for Neural Network Certification »
Gagandeep Singh · Rupanshu Ganvir · Markus Püschel · Martin Vechev -
2019 Poster: Certifying Geometric Robustness of Neural Networks »
Mislav Balunovic · Maximilian Baader · Gagandeep Singh · Timon Gehr · Martin Vechev -
2018 Poster: Learning to Solve SMT Formulas »
Mislav Balunovic · Pavol Bielik · Martin Vechev -
2018 Oral: Learning to Solve SMT Formulas »
Mislav Balunovic · Pavol Bielik · Martin Vechev -
2018 Poster: Fast and Effective Robustness Certification »
Gagandeep Singh · Timon Gehr · Matthew Mirman · Markus Püschel · Martin Vechev