Timezone: »
To what extent are effectiveness estimates of nonpharmaceutical interventions (NPIs) against COVID-19 influenced by the assumptions our models make? To answer this question, we investigate 2 state-of-the-art NPI effectiveness models and propose 6 variants that make different structural assumptions. In particular, we investigate how well NPI effectiveness estimates generalise to unseen countries, and their sensitivity to unobserved factors. Models that account for noise in disease transmission compare favourably. We further evaluate how robust estimates are to different choices of epidemiological parameters and data. Focusing on models that assume transmission noise, we find that previously published results are remarkably robust across these variables. Finally, we mathematically ground the interpretation of NPI effectiveness estimates when certain common assumptions do not hold.
Author Information
Mrinank Sharma (University of Oxford)
Sören Mindermann (University of Oxford)
Jan Brauner (University of Oxford)
Gavin Leech (University of Bristol)
Anna Stephenson (Harvard University)
Tomáš Gavenčiak (Independent researcher)
Jan Kulveit (University of Oxford)
Yee Whye Teh (University of Oxford, DeepMind)
I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.
Leonid Chindelevitch (Simon Fraser University)
Yarin Gal (University of Oxford)

Yarin leads the Oxford Applied and Theoretical Machine Learning (OATML) group. He is an Associate Professor of Machine Learning at the Computer Science department, University of Oxford. He is also the Tutorial Fellow in Computer Science at Christ Church, Oxford, and a Turing Fellow at the Alan Turing Institute, the UK’s national institute for data science and artificial intelligence. Prior to his move to Oxford he was a Research Fellow in Computer Science at St Catharine’s College at the University of Cambridge. He obtained his PhD from the Cambridge machine learning group, working with Prof Zoubin Ghahramani and funded by the Google Europe Doctoral Fellowship. He made substantial contributions to early work in modern Bayesian deep learning—quantifying uncertainty in deep learning—and developed ML/AI tools that can inform their users when the tools are “guessing at random”. These tools have been deployed widely in industry and academia, with the tools used in medical applications, robotics, computer vision, astronomy, in the sciences, and by NASA. Beyond his academic work, Yarin works with industry on deploying robust ML tools safely and responsibly. He co-chairs the NASA FDL AI committee, and is an advisor with Canadian medical imaging company Imagia, Japanese robotics company Preferred Networks, as well as numerous startups.
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? »
Wed. Dec 9th 05:00 -- 07:00 PM Room Poster Session 3 #978
More from the Same Authors
-
2020 : Paper 40: Real2sim: Automatic Generation of Open Street Map Towns For Autonomous Driving Benchmarks »
Panagiotis Tigas · Yarin Gal -
2020 Meetup: MeetUp: Oxford, UK »
Yarin Gal -
2021 Spotlight: Speedy Performance Estimation for Neural Architecture Search »
Robin Ru · Clare Lyle · Lisa Schut · Miroslav Fil · Mark van der Wilk · Yarin Gal -
2021 : Shifts: A Dataset of Real Distributional Shift Across Multiple Large-Scale Tasks »
Andrey Malinin · Neil Band · Yarin Gal · Mark Gales · Alexander Ganshin · German Chesnokov · Alexey Noskov · Andrey Ploskonosov · Liudmila Prokhorenkova · Ivan Provilkov · Vatsal Raina · Vyas Raina · Denis Roginskiy · Mariya Shmatova · Panagiotis Tigas · Boris Yangel -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : DeDUCE: Generating Counterfactual Explanations At Scale »
Benedikt Höltgen · Lisa Schut · Jan Brauner · Yarin Gal -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific »
Andrew Jesson · Peter Manshausen · Alyson Douglas · Duncan Watson-Parris · Yarin Gal · Philip Stier -
2021 : DARTS without a Validation Set: Optimizing the Marginal Likelihood »
Miroslav Fil · Robin Ru · Clare Lyle · Yarin Gal -
2021 : Uncertainty Quantification in End-to-End Implicit Neural Representations for Medical Imaging »
Bobby He · Francisca Vasconcelos · Yee Whye Teh -
2021 : Using Non-Linear Causal Models to StudyAerosol-Cloud Interactions in the Southeast Pacific »
Andrew Jesson · Peter Manshausen · Alyson Douglas · Duncan Watson-Parris · Yarin Gal · Philip Stier -
2021 : Can Network Flatness Explain the Training Speed-Generalisation Connection? »
Albert Q. Jiang · Clare Lyle · Lisa Schut · Yarin Gal -
2021 : Decomposing Representations for Deterministic Uncertainty Estimation »
Haiwen Huang · Joost van Amersfoort · Yarin Gal -
2021 : On Feature Collapse and Deep Kernel Learning for Single Forward Pass Uncertainty »
Joost van Amersfoort · Lewis Smith · Andrew Jesson · Oscar Key · Yarin Gal -
2021 : Contrastive Representation Learning with Trainable Augmentation Channel »
Masanori Koyama · Kentaro Minami · Takeru Miyato · Yarin Gal -
2021 : Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning »
Zachary Nado · Neil Band · Mark Collier · Josip Djolonga · Mike Dusenberry · Sebastian Farquhar · Qixuan Feng · Angelos Filos · Marton Havasi · Rodolphe Jenatton · Ghassen Jerfel · Jeremiah Liu · Zelda Mariet · Jeremy Nixon · Shreyas Padhy · Jie Ren · Tim G. J. Rudner · Yeming Wen · Florian Wenzel · Kevin Murphy · D. Sculley · Balaji Lakshminarayanan · Jasper Snoek · Yarin Gal · Dustin Tran -
2021 : Uncertainty Quantification in End-to-End Implicit Neural Representations for Medical Imaging »
Francisca Vasconcelos · Bobby He · Yee Teh -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2022 : Discovering Long-period Exoplanets using Deep Learning with Citizen Science Labels »
Shreshth A Malik · Nora Eisner · Chris Lintott · Yarin Gal -
2022 : Pre-training via Denoising for Molecular Property Prediction »
Sheheryar Zaidi · Michael Schaarschmidt · James Martens · Hyunjik Kim · Yee Whye Teh · Alvaro Sanchez Gonzalez · Peter Battaglia · Razvan Pascanu · Jonathan Godwin -
2022 : Using uncertainty-aware machine learning models to study aerosol-cloud interactions »
Maëlys Solal · Andrew Jesson · Yarin Gal · Alyson Douglas -
2022 : TranceptEVE: Combining Family-specific and Family-agnostic Models of Protein Sequences for Improved Fitness Prediction »
Pascal Notin · Lodevicus van Niekerk · Aaron Kollasch · Daniel Ritter · Yarin Gal · Debora Marks -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2022 : When Does Re-initialization Work? »
Sheheryar Zaidi · Tudor Berariu · Hyunjik Kim · Jorg Bornschein · Claudia Clopath · Yee Whye Teh · Razvan Pascanu -
2022 : What 'Out-of-distribution' Is and Is Not »
Sebastian Farquhar · Yarin Gal -
2022 : Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation in Natural Language Generation »
Lorenz Kuhn · Yarin Gal · Sebastian Farquhar -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2023 Poster: Geometric Neural Diffusion Processes »
Emile Mathieu · Vincent Dutordoir · Michael Hutchinson · Valentin De Bortoli · Yee Whye Teh · Richard Turner -
2023 Poster: Deep Stochastic Processes via Functional Markov Transition Operators »
Jin Xu · Emilien Dupont · Kaspar Märtens · Thomas Rainforth · Yee Whye Teh -
2023 Poster: ProteinNPT: Improving protein property prediction and design with non-parametric transformers »
Pascal Notin · Ruben Weitzman · Debora Marks · Yarin Gal -
2023 Poster: Synthetic Experience Replay »
Cong Lu · Philip Ball · Yee Whye Teh · Jack Parker-Holder -
2023 Poster: ProteinGym: Large-Scale Benchmarks for Protein Fitness Prediction and Design »
Pascal Notin · Aaron Kollasch · Daniel Ritter · Lodevicus van Niekerk · Nathan Rollins · Steffanie Paul · Ada Shaw · Ruben Weitzman · Jonathan Frazer · Mafalda Dias · Dinko Franceschi · Rose Orenbuch · Han Spinner · Yarin Gal · Debora Marks -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: Conformal Off-Policy Prediction in Contextual Bandits »
Muhammad Faaiz Taufiq · Jean-Francois Ton · Rob Cornish · Yee Whye Teh · Arnaud Doucet -
2022 Poster: Tractable Function-Space Variational Inference in Bayesian Neural Networks »
Tim G. J. Rudner · Zonghao Chen · Yee Whye Teh · Yarin Gal -
2022 Poster: Conformal Off-Policy Prediction in Contextual Bandits »
Muhammad Faaiz Taufiq · Jean-Francois Ton · Rob Cornish · Yee Whye Teh · Arnaud Doucet -
2022 Poster: Scalable Sensitivity and Uncertainty Analyses for Causal-Effect Estimates of Continuous-Valued Interventions »
Andrew Jesson · Alyson Douglas · Peter Manshausen · Maëlys Solal · Nicolai Meinshausen · Philip Stier · Yarin Gal · Uri Shalit -
2022 Poster: Interventions, Where and How? Experimental Design for Causal Models at Scale »
Panagiotis Tigas · Yashas Annadani · Andrew Jesson · Bernhard Schölkopf · Yarin Gal · Stefan Bauer -
2022 Poster: Riemannian Score-Based Generative Modelling »
Valentin De Bortoli · Emile Mathieu · Michael Hutchinson · James Thornton · Yee Whye Teh · Arnaud Doucet -
2022 Poster: Active Surrogate Estimators: An Active Learning Approach to Label-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Thomas Rainforth -
2021 : Human-in-the-loop Bayesian Deep Learning »
Yarin Gal -
2021 : [S7] DeDUCE: Generating Counterfactual Explanations At Scale »
Benedikt Höltgen · Lisa Schut · Jan Brauner · Yarin Gal -
2021 Workshop: Bayesian Deep Learning »
Yarin Gal · Yingzhen Li · Sebastian Farquhar · Christos Louizos · Eric Nalisnick · Andrew Gordon Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 Poster: On Contrastive Representations of Stochastic Processes »
Emile Mathieu · Adam Foster · Yee Teh -
2021 Poster: Speedy Performance Estimation for Neural Architecture Search »
Robin Ru · Clare Lyle · Lisa Schut · Miroslav Fil · Mark van der Wilk · Yarin Gal -
2021 : Evaluating Approximate Inference in Bayesian Deep Learning + Q&A »
Andrew Gordon Wilson · Pavel Izmailov · Matthew Hoffman · Yarin Gal · Yingzhen Li · Melanie F. Pradier · Sharad Vikram · Andrew Foong · Sanae Lotfi · Sebastian Farquhar -
2021 Poster: Group Equivariant Subsampling »
Jin Xu · Hyunjik Kim · Thomas Rainforth · Yee Teh -
2021 Poster: Outcome-Driven Reinforcement Learning via Variational Inference »
Tim G. J. Rudner · Vitchyr Pong · Rowan McAllister · Yarin Gal · Sergey Levine -
2021 Poster: Powerpropagation: A sparsity inducing weight reparameterisation »
Jonathan Richard Schwarz · Siddhant Jayakumar · Razvan Pascanu · Peter E Latham · Yee Teh -
2021 Poster: Improving black-box optimization in VAE latent space using decoder uncertainty »
Pascal Notin · José Miguel Hernández-Lobato · Yarin Gal -
2021 Poster: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations »
Tim G. J. Rudner · Cong Lu · Michael A Osborne · Yarin Gal · Yee Teh -
2021 : Shifts Challenge: Robustness and Uncertainty under Real-World Distributional Shift + Q&A »
Andrey Malinin · Neil Band · German Chesnokov · Yarin Gal · Alexander Ganshin · Mark Gales · Alexey Noskov · Liudmila Prokhorenkova · Mariya Shmatova · Vyas Raina · Vatsal Raina · Panagiotis Tigas · Boris Yangel -
2021 Poster: Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data »
Andrew Jesson · Panagiotis Tigas · Joost van Amersfoort · Andreas Kirsch · Uri Shalit · Yarin Gal -
2021 Poster: Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels »
Michael Hutchinson · Alexander Terenin · Viacheslav Borovitskiy · So Takao · Yee Teh · Marc Deisenroth -
2021 Poster: BayesIMP: Uncertainty Quantification for Causal Data Fusion »
Siu Lun Chau · Jean-Francois Ton · Javier González · Yee Teh · Dino Sejdinovic -
2021 Poster: Domain Invariant Representation Learning with Domain Density Transformations »
A. Tuan Nguyen · Toan Tran · Yarin Gal · Atilim Gunes Baydin -
2021 Poster: Neural Ensemble Search for Uncertainty Estimation and Dataset Shift »
Sheheryar Zaidi · Arber Zela · Thomas Elsken · Chris C Holmes · Frank Hutter · Yee Teh -
2021 Poster: Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning »
Jannik Kossen · Neil Band · Clare Lyle · Aidan Gomez · Thomas Rainforth · Yarin Gal -
2020 Poster: Bayesian Deep Ensembles via the Neural Tangent Kernel »
Bobby He · Balaji Lakshminarayanan · Yee Whye Teh -
2020 Poster: Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior Approximations »
Sebastian Farquhar · Lewis Smith · Yarin Gal -
2020 Poster: Bootstrapping neural processes »
Juho Lee · Yoonho Lee · Jungtaek Kim · Eunho Yang · Sung Ju Hwang · Yee Whye Teh -
2020 Poster: A Bayesian Perspective on Training Speed and Model Selection »
Clare Lyle · Lisa Schut · Robin Ru · Yarin Gal · Mark van der Wilk -
2020 Poster: Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models »
Andrew Jesson · Sören Mindermann · Uri Shalit · Yarin Gal -
2020 : How Robust are the Estimated Effects of Nonpharmaceutical Interventions against COVID-19? »
Sören Mindermann · Mrinank Sharma · Jan Brauner -
2019 : Coffee Break & Poster Session 2 »
Juho Lee · Yoonho Lee · Yee Whye Teh · Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing · Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Christian Bueno · Aditya Sanghi · Pradeep Kumar Jayaraman · Ignacio Arroyo-Fernández · Andrew Hryniowski · Vinayak Mathur · Sanjay Singh · Shahrzad Haddadan · Vasco Portilheiro · Luna Zhang · Mert Yuksekgonul · Jhosimar Arias Figueroa · Deepak Maurya · Balaraman Ravindran · Frank NIELSEN · Philip Pham · Justin Payan · Andrew McCallum · Jinesh Mehta · Ke SUN -
2019 : Contributed Talk - Towards deep amortized clustering »
Juho Lee · Yoonho Lee · Yee Whye Teh -
2019 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Eric Nalisnick · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2019 Poster: Stacked Capsule Autoencoders »
Adam Kosiorek · Sara Sabour · Yee Whye Teh · Geoffrey E Hinton -
2019 Poster: BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning »
Andreas Kirsch · Joost van Amersfoort · Yarin Gal -
2019 Poster: Continual Unsupervised Representation Learning »
Dushyant Rao · Francesco Visin · Andrei A Rusu · Razvan Pascanu · Yee Whye Teh · Raia Hadsell -
2019 Poster: Random Tessellation Forests »
Shufei Ge · Shijia Wang · Yee Whye Teh · Liangliang Wang · Lloyd Elliott -
2019 Poster: Variational Bayesian Optimal Experimental Design »
Adam Foster · Martin Jankowiak · Elias Bingham · Paul Horsfall · Yee Whye Teh · Thomas Rainforth · Noah Goodman -
2019 Spotlight: Variational Bayesian Optimal Experimental Design »
Adam Foster · Martin Jankowiak · Elias Bingham · Paul Horsfall · Yee Whye Teh · Thomas Rainforth · Noah Goodman -
2019 Poster: Augmented Neural ODEs »
Emilien Dupont · Arnaud Doucet · Yee Whye Teh -
2019 Poster: Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders »
Emile Mathieu · Charline Le Lan · Chris Maddison · Ryota Tomioka · Yee Whye Teh -
2018 : TBC 15 »
Yarin Gal -
2018 : Invited Speaker #5 Yarin Gal »
Yarin Gal -
2018 : Introduction of the workshop »
Razvan Pascanu · Yee Teh · Mark Ring · Marc Pickett -
2018 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2018 Workshop: Continual Learning »
Razvan Pascanu · Yee Teh · Marc Pickett · Mark Ring -
2018 Workshop: Critiquing and Correcting Trends in Machine Learning »
Thomas Rainforth · Matt Kusner · Benjamin Bloem-Reddy · Brooks Paige · Rich Caruana · Yee Whye Teh -
2018 : Opening Remarks »
Yarin Gal -
2018 Poster: Faithful Inversion of Generative Models for Effective Amortized Inference »
Stefan Webb · Adam Golinski · Rob Zinkov · Siddharth N · Thomas Rainforth · Yee Whye Teh · Frank Wood -
2018 Poster: Causal Inference via Kernel Deviance Measures »
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh -
2018 Poster: BRUNO: A Deep Recurrent Model for Exchangeable Data »
Iryna Korshunova · Jonas Degrave · Ferenc Huszar · Yarin Gal · Arthur Gretton · Joni Dambre -
2018 Spotlight: Causal Inference via Kernel Deviance Measures »
Jovana Mitrovic · Dino Sejdinovic · Yee Whye Teh -
2018 Poster: Stochastic Expectation Maximization with Variance Reduction »
Jianfei Chen · Jun Zhu · Yee Whye Teh · Tong Zhang -
2018 Poster: Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects »
Adam Kosiorek · Hyunjik Kim · Yee Whye Teh · Ingmar Posner -
2018 Spotlight: Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects »
Adam Kosiorek · Hyunjik Kim · Yee Whye Teh · Ingmar Posner -
2018 Poster: Modelling sparsity, heterogeneity, reciprocity and community structure in temporal interaction data »
Xenia Miscouridou · Francois Caron · Yee Whye Teh -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2017 Invited Talk: On Bayesian Deep Learning and Deep Bayesian Learning »
Yee Whye Teh -
2017 Poster: Concrete Dropout »
Yarin Gal · Jiri Hron · Alex Kendall -
2017 Poster: Distral: Robust multitask reinforcement learning »
Yee Teh · Victor Bapst · Wojciech Czarnecki · John Quan · James Kirkpatrick · Raia Hadsell · Nicolas Heess · Razvan Pascanu -
2017 Poster: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? »
Alex Kendall · Yarin Gal -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2017 Spotlight: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? »
Alex Kendall · Yarin Gal -
2017 Poster: Real Time Image Saliency for Black Box Classifiers »
Piotr Dabkowski · Yarin Gal -
2016 : Panel Discussion »
Shakir Mohamed · David Blei · Ryan Adams · José Miguel Hernández-Lobato · Ian Goodfellow · Yarin Gal -
2016 Workshop: Bayesian Deep Learning »
Yarin Gal · Christos Louizos · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2016 Poster: A Theoretically Grounded Application of Dropout in Recurrent Neural Networks »
Yarin Gal · Zoubin Ghahramani -
2016 Poster: Gaussian Processes for Survival Analysis »
Tamara Fernandez · Nicolas Rivera · Yee Whye Teh -
2015 Workshop: Scalable Monte Carlo Methods for Bayesian Analysis of Big Data »
Babak Shahbaba · Yee Whye Teh · Max Welling · Arnaud Doucet · Christophe Andrieu · Sebastian J. Vollmer · Pierre Jacob -
2015 : Random Tensor Decompositions for Regression and Collaborative Filtering »
Yee Whye Teh -
2015 Poster: A hybrid sampler for Poisson-Kingman mixture models »
Maria Lomeli · Stefano Favaro · Yee Whye Teh -
2015 Poster: Expectation Particle Belief Propagation »
Thibaut Lienart · Yee Whye Teh · Arnaud Doucet -
2014 Poster: Distributed Bayesian Posterior Sampling via Moment Sharing »
Minjie Xu · Balaji Lakshminarayanan · Yee Whye Teh · Jun Zhu · Bo Zhang -
2014 Poster: Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models »
Yarin Gal · Mark van der Wilk · Carl Edward Rasmussen -
2014 Poster: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2014 Oral: Asynchronous Anytime Sequential Monte Carlo »
Brooks Paige · Frank Wood · Arnaud Doucet · Yee Whye Teh -
2014 Poster: Mondrian Forests: Efficient Online Random Forests »
Balaji Lakshminarayanan · Daniel Roy · Yee Whye Teh -
2013 Poster: Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space »
Xinhua Zhang · Wee Sun Lee · Yee Whye Teh -
2013 Spotlight: Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space »
Xinhua Zhang · Wee Sun Lee · Yee Whye Teh -
2013 Poster: Bayesian Hierarchical Community Discovery »
Charles Blundell · Yee Whye Teh -
2013 Poster: Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex »
Sam Patterson · Yee Whye Teh -
2013 Spotlight: Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex »
Sam Patterson · Yee Whye Teh -
2012 Poster: Searching for objects driven by context »
Bogdan Alexe · Nicolas Heess · Yee Whye Teh · Vittorio Ferrari -
2012 Poster: Learning Label Trees for Probabilistic Modelling of Implicit Feedback »
Andriy Mnih · Yee Whye Teh -
2012 Poster: MCMC for continuous-time discrete-state systems »
Vinayak Rao · Yee Whye Teh -
2012 Poster: Bayesian nonparametric models for ranked data »
Francois Caron · Yee Whye Teh -
2012 Spotlight: Searching for objects driven by context »
Bogdan Alexe · Nicolas Heess · Yee Whye Teh · Vittorio Ferrari -
2012 Poster: Scalable imputation of genetic data with a discrete fragmentation-coagulation process »
Lloyd T Elliott · Yee Whye Teh -
2011 Poster: Modelling Genetic Variations using Fragmentation-Coagulation Processes »
Yee Whye Teh · Charles Blundell · Lloyd T Elliott -
2011 Oral: Modelling Genetic Variations using Fragmentation-Coagulation Processes »
Yee Whye Teh · Charles Blundell · Lloyd T Elliott -
2011 Poster: Gaussian process modulated renewal processes »
Vinayak Rao · Yee Whye Teh -
2011 Tutorial: Modern Bayesian Nonparametrics »
Peter Orbanz · Yee Whye Teh -
2010 Poster: Improvements to the Sequence Memoizer »
Jan Gasthaus · Yee Whye Teh -
2009 Workshop: Nonparametric Bayes »
Dilan Gorur · Francois Caron · Yee Whye Teh · David B Dunson · Zoubin Ghahramani · Michael Jordan -
2009 Workshop: Grammar Induction, Representation of Language and Language Learning »
Alex Clark · Dorota Glowacka · John Shawe-Taylor · Yee Whye Teh · Chris J Watkins -
2009 Poster: Indian Buffet Processes with Power-law Behavior »
Yee Whye Teh · Dilan Gorur -
2009 Spotlight: Indian Buffet Processes with Power-law Behavior »
Yee Whye Teh · Dilan Gorur -
2009 Poster: Spatial Normalized Gamma Processes »
Vinayak Rao · Yee Whye Teh -
2009 Spotlight: Spatial Normalized Gamma Processes »
Vinayak Rao · Yee Whye Teh -
2008 Oral: The Mondrian Process »
Daniel Roy · Yee Whye Teh -
2008 Poster: The Infinite Factorial Hidden Markov Model »
Jurgen Van Gael · Yee Whye Teh · Zoubin Ghahramani -
2008 Poster: The Mondrian Process »
Daniel Roy · Yee Whye Teh -
2008 Spotlight: The Infinite Factorial Hidden Markov Model »
Jurgen Van Gael · Yee Whye Teh · Zoubin Ghahramani -
2008 Poster: A mixture model for the evolution of gene expression in non-homogeneous datasets »
Gerald Quon · Yee Whye Teh · Esther Chan · Michael Brudno · Tim Hughes · Quaid Morris -
2008 Poster: Dependent Dirichlet Process Spike Sorting »
Jan Gasthaus · Frank Wood · Dilan Gorur · Yee Whye Teh -
2008 Poster: An Efficient Sequential Monte Carlo Algorithm for Coalescent Clustering »
Dilan Gorur · Yee Whye Teh -
2007 Poster: Bayesian Agglomerative Clustering with Coalescents »
Yee Whye Teh · Hal Daumé III · Daniel Roy -
2007 Poster: Cooled and Relaxed Survey Propagation for MRFs »
Hai Leong Chieu · Wee Sun Lee · Yee Whye Teh -
2007 Session: Session 5: Probabilistic Representations and Learning »
Yee Whye Teh -
2007 Spotlight: Cooled and Relaxed Survey Propagation for MRFs »
Hai Leong Chieu · Wee Sun Lee · Yee Whye Teh -
2007 Oral: Bayesian Agglomerative Clustering with Coalescents »
Yee Whye Teh · Hal Daumé III · Daniel Roy -
2007 Spotlight: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2007 Poster: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2006 Poster: A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation »
Yee Whye Teh · David Newman · Max Welling