Timezone: »
Author Information
Vijil Chenthamarakshan (IBM Research)
Payel Das (IBM Research)
Samuel Hoffman (IBM Research)
Hendrik Strobelt (IBM Research)
Inkit Padhi (IBM Research)
Kar Wai Lim (IBM Singapore)
Benjamin Hoover (IBM Research)
Matteo Manica (IBM Research Zürich)
Matteo is a Pre-Doc in Cognitive Health Care and Life Sciences Department at IBM Zürich Research Laboratory. He is enrolled in a joint PhD programme with Institute of Molecular Systems Biology, ETH - Zürich. His research is focused on the development of predictive computational technologies and learning frameworks to exploit and integrate multiple molecular and clinical data in the context of cancer medicine in order to improve patients stratification and inform clinicians with personalized therapeutic interventions. He is currently working on the application of machine and deep learning methods to analyze progression and development of prostate cancer in the context an H2020 EU project, PrECISE. Before joining IBM, Matteo worked as consultant in data science and software development with specific applications in biological fluids dynamic, digital and biological signal processing and data analysis. The main focus was on the analysis of CT angiography and MR angiography scans of abdominal aortic aneurysms (AAA). Trough image analysis, segmentation and 3D volume rendering of the abdominal aorta he contributed to create patient specific models to simulate blood flows in the vessels and to assess rupture risk of the aneurysm. He obtained his BSc and MSc at Politecnico di Milano in Applied Mathematics and Computer Science, a course with a strong focus on numerical simulations and data analysis. In his master thesis work he developed an original model, based partial different equations for flow in porous media, to describe Medulloblastoma growth. By analysing MRIs at different time points of a given patient it was possible to fit the model trough segmentation and 3D volume rendering of the brain and the tumor mass, enabling an accurate estimate of the disease’s course over time.
Jannis Born (IBM Research)
Teodoro Laino (IBM Research Zurich)
Aleksandra Mojsilovic (IBM Research)
More from the Same Authors
-
2021 : Accurate Multi-Endpoint Molecular Toxicity Predictions in Humans with Contrastive Explanations »
Bhanushee Sharma · Vijil Chenthamarakshan · Amit Dhurandhar · James Hendler · Jonathan S. Dordick · Payel Das -
2021 : Active site sequence representation of human kinases outperforms full sequence for affinity prediction »
Jannis Born · Tien Huynh · Astrid Stroobants · Wendy Cornell · Matteo Manica -
2021 : Identification of Enzymatic Active Sites with Unsupervised Language Modelling »
Loïc Kwate Dassi · Matteo Manica · Daniel Probst · Philippe Schwaller · Yves Gaetan Nana Teukam · Teodoro Laino -
2021 : Human-in-the-loop for a Disconnection Aware Retrosynthesis »
Andrea Byekwaso · Philippe Schwaller · Alain C. Vaucher · Teodoro Laino -
2021 : Sample-Efficient Generation of Novel Photo-acid Generator Molecules using a Deep Generative Model »
Samuel Hoffman · Vijil Chenthamarakshan · Dmitry Zubarev · Daniel Sanders · Payel Das -
2021 : Grapher: Multi-Stage Knowledge Graph Construction using Pretrained Language Models »
Igor Melnyk · Pierre Dognin · Payel Das -
2022 : Reducing Down(stream)time: Pretraining Molecular GNNs using Heterogeneous AI Accelerators »
Jenna A Bilbrey · Kristina Herman · Henry Sprueill · Sotiris Xantheas · Payel Das · Manuel Lopez Roldan · Mike Kraus · Hatem Helal · Sutanay Choudhury -
2022 : A Universal Abstraction for Hierarchical Hopfield Networks »
Benjamin Hoover · Duen Horng Chau · Hendrik Strobelt · Dmitry Krotov -
2022 : Standardization of chemical compounds using language modeling »
Miruna Cretu · Alessandra Toniato · Alain C. Vaucher · Amol Thakkar · Amin Debabeche · Teodoro Laino -
2022 : A Universal Abstraction for Hierarchical Hopfield Networks »
Benjamin Hoover · Duen Horng Chau · Hendrik Strobelt · Dmitry Krotov -
2022 : Consistent Training via Energy-Based GFlowNets for Modeling Discrete Joint Distributions »
Chanakya Ekbote · Moksh Jain · Payel Das · Yoshua Bengio -
2022 : A Universal Abstraction for Hierarchical Hopfield Networks »
Benjamin Hoover · Duen Horng Chau · Hendrik Strobelt · Dmitry Krotov -
2022 : Panel »
Pin-Yu Chen · Alex Gittens · Bo Li · Celia Cintas · Hilde Kuehne · Payel Das -
2022 : SynBench: Task-Agnostic Benchmarking of Pretrained Representations using Synthetic Data »
Ching-Yun Ko · Pin-Yu Chen · Jeet Mohapatra · Payel Das · Luca Daniel -
2022 Expo Demonstration: Real-time Navigation of Chemical Space with Cloud-Based Inference from MoLFormer »
Payel Das · Brian Belgodere -
2021 : Grapher: Multi-Stage Knowledge Graph Construction using Pretrained Language Models »
Igor Melnyk · Pierre Dognin · Payel Das -
2021 : Sample-Efficient Generation of Novel Photo-acid Generator Molecules using a Deep Generative Model »
Samuel Hoffman · Vijil Chenthamarakshan · Dmitry Zubarev · Daniel Sanders · Payel Das -
2021 Poster: Predicting Deep Neural Network Generalization with Perturbation Response Curves »
Yair Schiff · Brian Quanz · Payel Das · Pin-Yu Chen -
2021 Poster: Mean-based Best Arm Identification in Stochastic Bandits under Reward Contamination »
Arpan Mukherjee · Ali Tajer · Pin-Yu Chen · Payel Das -
2021 : Interactive Exploration for 60 Years of AI Research »
Hendrik Strobelt · Benjamin Hoover -
2020 : Closing Keynote by Aleksandra (Saška) Mojsilović - "Platforms 4 Good: Realizing the potential of AI in addressing societal challenges" »
Aleksandra Mojsilovic -
2020 : Spotlight: Characterizing the Latent Space of Molecular Generative Models with Persistent Homology Metrics »
Yair Schiff · Payel Das · Vijil Chenthamarakshan · Karthikeyan Natesan Ramamurthy -
2020 Poster: A Decentralized Parallel Algorithm for Training Generative Adversarial Nets »
Mingrui Liu · Wei Zhang · Youssef Mroueh · Xiaodong Cui · Jarret Ross · Tianbao Yang · Payel Das -
2020 : Spotlight on women at IBM Research »
Lisa Amini · Francesca Rossi · Celia Cintas · Payel Das -
2020 Demonstration: LMdiff: A Visual Diff Tool to Compare LanguageModels »
Hendrik Strobelt · Benjamin Hoover · Arvind Satyanarayan · Sebastian Gehrmann -
2020 : CogMol: Target-Specific and Selective Drug Design for COVID-19 Using Deep Generative Models »
Payel Das -
2020 Social: A Decemberfest on Trustworthy AI Research - An overview and panel discussion with virtual drinks and Bretzels »
Vanessa Faber · Hendrik Strobelt -
2020 Poster: Optimizing Mode Connectivity via Neuron Alignment »
Norman J Tatro · Pin-Yu Chen · Payel Das · Igor Melnyk · Prasanna Sattigeri · Rongjie Lai -
2020 Demonstration: Shared Interest: Human Annotations vs. AI Saliency »
Angie Boggust · Benjamin Hoover · Arvind Satyanarayan · Hendrik Strobelt -
2020 Expo Talk Panel: AI against COVID-19 at IBM Research »
Divya Pathak · Payel Das · Michal Rosen-Zvi · Salim Roukos -
2019 Demonstration: exBERT: A Visual Analysis Tool to Explain BERT's Learned Representations »
Benjamin Hoover · Hendrik Strobelt · Sebastian Gehrmann -
2019 Poster: Sobolev Independence Criterion »
Youssef Mroueh · Tom Sercu · Mattia Rigotti · Inkit Padhi · Cicero Nogueira dos Santos -
2018 : Contributed Work »
Thaer Moustafa Dieb · Aditya Balu · Amir H. Khasahmadi · Viraj Shah · Boris Knyazev · Payel Das · Garrett Goh · Georgy Derevyanko · Gianni De Fabritiis · Reiko Hagawa · John Ingraham · David Belanger · Jialin Song · Kim Nicoli · Miha Skalic · Michelle Wu · Niklas Gebauer · Peter Bjørn Jørgensen · Ryan-Rhys Griffiths · Shengchao Liu · Sheshera Mysore · Hai Leong Chieu · Philippe Schwaller · Bart Olsthoorn · Bianca-Cristina Cristescu · Wei-Cheng Tseng · Seongok Ryu · Iddo Drori · Kevin Yang · Soumya Sanyal · Zois Boukouvalas · Rishi Bedi · Arindam Paul · Sambuddha Ghosal · Daniil Bash · Clyde Fare · Zekun Ren · Ali Oskooei · Minn Xuan Wong · Paul Sinz · Théophile Gaudin · Wengong Jin · Paul Leu -
2018 Poster: Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives »
Amit Dhurandhar · Pin-Yu Chen · Ronny Luss · Chun-Chen Tu · Paishun Ting · Karthikeyan Shanmugam · Payel Das -
2008 Poster: Regularized Co-Clustering with Dual Supervision »
Vikas Sindhwani · Jianying Hu · Aleksandra Mojsilovic