Timezone: »
Compositionality is a basic structural feature of both biological and artificial neural networks. Learning compositional functions via gradient descent incurs well known problems like vanishing and exploding gradients, making careful learning rate tuning essential for real-world applications. This paper proves that multiplicative weight updates satisfy a descent lemma tailored to compositional functions. Based on this lemma, we derive Madam---a multiplicative version of the Adam optimiser---and show that it can train state of the art neural network architectures without learning rate tuning. We further show that Madam is easily adapted to train natively compressed neural networks by representing their weights in a logarithmic number system. We conclude by drawing connections between multiplicative weight updates and recent findings about synapses in biology.
Author Information
Jeremy Bernstein (Caltech)
Jiawei Zhao (Caltech)
Markus Meister (Caltech)
Ming-Yu Liu (NVIDIA)
Anima Anandkumar (NVIDIA / Caltech)
Anima Anandkumar is a Bren professor at Caltech CMS department and a director of machine learning research at NVIDIA. Her research spans both theoretical and practical aspects of large-scale machine learning. In particular, she has spearheaded research in tensor-algebraic methods, non-convex optimization, probabilistic models and deep learning. Anima is the recipient of several awards and honors such as the Bren named chair professorship at Caltech, Alfred. P. Sloan Fellowship, Young investigator awards from the Air Force and Army research offices, Faculty fellowships from Microsoft, Google and Adobe, and several best paper awards. Anima received her B.Tech in Electrical Engineering from IIT Madras in 2004 and her PhD from Cornell University in 2009. She was a postdoctoral researcher at MIT from 2009 to 2010, a visiting researcher at Microsoft Research New England in 2012 and 2014, an assistant professor at U.C. Irvine between 2010 and 2016, an associate professor at U.C. Irvine between 2016 and 2017 and a principal scientist at Amazon Web Services between 2016 and 2018.
Yisong Yue (Caltech)
More from the Same Authors
-
2021 : The Multi-Agent Behavior Dataset: Mouse Dyadic Social Interactions »
Jennifer J Sun · Tomomi Karigo · Dipam Chakraborty · Sharada Mohanty · Benjamin Wild · Quan Sun · Chen Chen · David Anderson · Pietro Perona · Yisong Yue · Ann Kennedy -
2021 : Empirical Study of Off-Policy Policy Evaluation for Reinforcement Learning »
Cameron Voloshin · Hoang Le · Nan Jiang · Yisong Yue -
2021 : Reinforcement Learning in Factored Action Spaces using Tensor Decompositions »
Anuj Mahajan · Mikayel Samvelyan · Lei Mao · Viktor Makoviichuk · Animesh Garg · Jean Kossaifi · Shimon Whiteson · Yuke Zhu · Anima Anandkumar -
2022 Poster: MinVIS: A Minimal Video Instance Segmentation Framework without Video-based Training »
De-An Huang · Zhiding Yu · Anima Anandkumar -
2022 : Can you label less by using out-of-domain data? Active & Transfer Learning with Few-shot Instructions »
Rafal Kocielnik · Sara Kangaslahti · Shrimai Prabhumoye · Meena Hari · Michael Alvarez · Anima Anandkumar -
2022 : Predicting Full-Field Turbulent Flows Using Fourier Neural Operator »
Peter Renn · Sahin Lale · Cong Wang · Zongyi Li · Anima Anandkumar · Morteza Gharib -
2022 : ZerO Initialization: Initializing Neural Networks with only Zeros and Ones »
Jiawei Zhao · Florian Schaefer · Anima Anandkumar -
2022 : Retrieval-based Controllable Molecule Generation »
Jack Wang · Weili Nie · Zhuoran Qiao · Chaowei Xiao · Richard Baraniuk · Anima Anandkumar -
2022 : Towards Neural Variational Monte Carlo That Scales Linearly with System Size »
Or Sharir · Garnet Chan · Anima Anandkumar -
2022 : Incremental Fourier Neural Operator »
Jiawei Zhao · Robert Joseph George · Yifei Zhang · Zongyi Li · Anima Anandkumar -
2022 : FALCON: Fourier Adaptive Learning and Control for Disturbance Rejection Under Extreme Turbulence »
Sahin Lale · Peter Renn · Kamyar Azizzadenesheli · Babak Hassibi · Morteza Gharib · Anima Anandkumar -
2022 : Fourier Continuation for Exact Derivative Computation in Physics-Informed Neural Operators »
Haydn Maust · Zongyi Li · Yixuan Wang · Anima Anandkumar -
2022 : MoleculeCLIP: Learning Transferable Molecule Multi-Modality Models via Natural Language »
Shengchao Liu · Weili Nie · Chengpeng Wang · Jiarui Lu · Zhuoran Qiao · Ling Liu · Jian Tang · Anima Anandkumar · Chaowei Xiao -
2022 : Fourier Neural Operator for Plasma Modelling »
Vignesh Gopakumar · Stanislas Pamela · Lorenzo Zanisi · Zongyi Li · Anima Anandkumar -
2022 : Neurosymbolic Programming for Science »
Jennifer J Sun · Megan Tjandrasuwita · Atharva Sehgal · Armando Solar-Lezama · Swarat Chaudhuri · Yisong Yue · Omar Costilla Reyes -
2022 : Dynamic-backbone protein-ligand structure prediction with multiscale generative diffusion models »
Zhuoran Qiao · Weili Nie · Arash Vahdat · Thomas Miller · Anima Anandkumar -
2022 : Stability Constrained Reinforcement Learning for Real-Time Voltage Control »
Jie Feng · Yuanyuan Shi · Guannan Qu · Steven Low · Anima Anandkumar · Adam Wierman -
2022 : SustainGym: A Benchmark Suite of Reinforcement Learning for Sustainability Applications »
Christopher Yeh · Victor Li · Rajeev Datta · Yisong Yue · Adam Wierman -
2022 : VIMA: General Robot Manipulation with Multimodal Prompts »
Yunfan Jiang · Agrim Gupta · Zichen Zhang · Guanzhi Wang · Yongqiang Dou · Yanjun Chen · Fei-Fei Li · Anima Anandkumar · Yuke Zhu · Linxi Fan -
2022 : Fast Sampling of Diffusion Models via Operator Learning »
Hongkai Zheng · Weili Nie · Arash Vahdat · Kamyar Azizzadenesheli · Anima Anandkumar -
2022 : DensePure: Understanding Diffusion Models towards Adversarial Robustness »
Zhongzhu Chen · Kun Jin · Jiongxiao Wang · Weili Nie · Mingyan Liu · Anima Anandkumar · Bo Li · Dawn Song -
2022 : HEAT: Hardware-Efficient Automatic Tensor Decomposition for Transformer Compression »
Jiaqi Gu · Ben Keller · Jean Kossaifi · Anima Anandkumar · Brucek Khailany · David Pan -
2023 Poster: Online Adaptive Policy Selection in Time-Varying Systems: No-Regret via Contractive Perturbations »
Yiheng Lin · James Preiss · Emile Anand · Yingying Li · Yisong Yue · Adam Wierman -
2023 Poster: Geometry-Informed Neural Operator for Large-Scale 3D PDEs »
Zongyi Li · Nikola Kovachki · Chris Choy · Boyi Li · Jean Kossaifi · Shourya Otta · Mohammad Amin Nabian · Maximilian Stadler · Christian Hundt · Kamyar Azizzadenesheli · Animashree Anandkumar -
2023 Workshop: Workshop on Advancing Neural Network Training (WANT): Computational Efficiency, Scalability, and Resource Optimization »
Julia Gusak · Jean Kossaifi · Alena Shilova · Cristiana Bentes · Animashree Anandkumar · Olivier Beaumont -
2023 Workshop: The Symbiosis of Deep Learning and Differential Equations -- III »
Luca Celotti · Martin Magill · Ermal Rrapaj · Winnie Xu · Qiyao Wei · Archis Joglekar · Michael Poli · Animashree Anandkumar -
2023 Workshop: New Frontiers of AI for Drug Discovery and Development »
Animashree Anandkumar · Ilija Bogunovic · Ti-chiun Chang · Quanquan Gu · Jure Leskovec · Michelle Li · Chong Liu · Nataša Tagasovska · Wei Wang -
2022 : Contributed Talk: DensePure: Understanding Diffusion Models towards Adversarial Robustness »
Zhongzhu Chen · Kun Jin · Jiongxiao Wang · Weili Nie · Mingyan Liu · Anima Anandkumar · Bo Li · Dawn Song -
2022 Workshop: Trustworthy and Socially Responsible Machine Learning »
Huan Zhang · Linyi Li · Chaowei Xiao · J. Zico Kolter · Anima Anandkumar · Bo Li -
2022 : Panel »
Jeevana Priya Inala · Pushmeet Kohli · Ann Kennedy · Sriram Rajamani · Yisong Yue -
2022 : HEAT: Hardware-Efficient Automatic Tensor Decomposition for Transformer Compression »
Jiaqi Gu · Ben Keller · Jean Kossaifi · Anima Anandkumar · Brucek Khailany · David Pan -
2022 : Dynamic-backbone protein-ligand structure prediction with multiscale generative diffusion models »
Zhuoran Qiao · Weili Nie · Arash Vahdat · Thomas Miller · Anima Anandkumar -
2022 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Adji Bousso Dieng · Emine Kucukbenli · Gilles Louppe · Siddharth Mishra-Sharma · Benjamin Nachman · Brian Nord · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Lenka Zdeborová · Rianne van den Berg -
2022 : Deep Neural Imputation: A Framework for Recovering Incomplete Brain Recordings »
Sabera Talukder · Jennifer J Sun · Matthew Leonard · Bingni Brunton · Yisong Yue -
2022 Workshop: AI for Science: Progress and Promises »
Yi Ding · Yuanqi Du · Tianfan Fu · Hanchen Wang · Anima Anandkumar · Yoshua Bengio · Anthony Gitter · Carla Gomes · Aviv Regev · Max Welling · Marinka Zitnik -
2022 Poster: Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language Models »
Manli Shu · Weili Nie · De-An Huang · Zhiding Yu · Tom Goldstein · Anima Anandkumar · Chaowei Xiao -
2022 Poster: Implicit Warping for Animation with Image Sets »
Arun Mallya · Ting-Chun Wang · Ming-Yu Liu -
2022 Poster: PeRFception: Perception using Radiance Fields »
Yoonwoo Jeong · Seungjoo Shin · Junha Lee · Chris Choy · Anima Anandkumar · Minsu Cho · Jaesik Park -
2022 Poster: Implicit Neural Representations with Levels-of-Experts »
Zekun Hao · Arun Mallya · Serge Belongie · Ming-Yu Liu -
2022 Poster: Finite-Time Regret of Thompson Sampling Algorithms for Exponential Family Multi-Armed Bandits »
Tianyuan Jin · Pan Xu · Xiaokui Xiao · Anima Anandkumar -
2022 Poster: Learning Chaotic Dynamics in Dissipative Systems »
Zongyi Li · Miguel Liu-Schiaffini · Nikola Kovachki · Kamyar Azizzadenesheli · Burigede Liu · Kaushik Bhattacharya · Andrew Stuart · Anima Anandkumar -
2022 Poster: Generating Long Videos of Dynamic Scenes »
Tim Brooks · Janne Hellsten · Miika Aittala · Ting-Chun Wang · Timo Aila · Jaakko Lehtinen · Ming-Yu Liu · Alexei Efros · Tero Karras -
2022 Poster: Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models »
Boxin Wang · Wei Ping · Chaowei Xiao · Peng Xu · Mostofa Patwary · Mohammad Shoeybi · Bo Li · Anima Anandkumar · Bryan Catanzaro -
2022 Poster: Pre-Trained Language Models for Interactive Decision-Making »
Shuang Li · Xavier Puig · Chris Paxton · Yilun Du · Clinton Wang · Linxi Fan · Tao Chen · De-An Huang · Ekin Akyürek · Anima Anandkumar · Jacob Andreas · Igor Mordatch · Antonio Torralba · Yuke Zhu -
2022 Poster: MineDojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge »
Linxi Fan · Guanzhi Wang · Yunfan Jiang · Ajay Mandlekar · Yuncong Yang · Haoyi Zhu · Andrew Tang · De-An Huang · Yuke Zhu · Anima Anandkumar -
2022 Poster: Policy Optimization with Linear Temporal Logic Constraints »
Cameron Voloshin · Hoang Le · Swarat Chaudhuri · Yisong Yue -
2021 : Anima Anandkumar »
Anima Anandkumar -
2021 : Panel B: Safe Learning and Decision Making in Uncertain and Unstructured Environments »
Yisong Yue · J. Zico Kolter · Ivan Dario D Jimenez Rodriguez · Dragos Margineantu · Animesh Garg · Melissa Greeff -
2021 : Reinforcement Learning in Factored Action Spaces using Tensor Decompositions »
Anuj Mahajan · Mikayel Samvelyan · Lei Mao · Viktor Makoviichuk · Animesh Garg · Jean Kossaifi · Shimon Whiteson · Yuke Zhu · Anima Anandkumar -
2021 : Learning for Agile Control in the Real World: Challenges and Opportunities »
Yisong Yue · Ivan Dario D Jimenez Rodriguez -
2021 : General Discussion 2 - What does the OOD problem mean to you and your field? with Anima Anandkumar, Terry Sejnowski, Chris White: General Discussion 2 »
Anima Anandkumar · Terry Sejnowski · Weiwei Yang · Joshua T Vogelstein -
2021 : Anima Anandkumar: Role of AI in predicting and mitigating climate change »
Anima Anandkumar -
2021 : Efficient Quantum Optimization via Multi-Basis Encodings and Tensor Rings »
Anima Anandkumar -
2021 : Low-Precision Training in Logarithmic Number System using Multiplicative Weight Update »
Jiawei Zhao · Steve Dai · Rangha Venkatesan · Brian Zimmer · Mustafa Ali · Ming-Yu Liu · Brucek Khailany · · Anima Anandkumar -
2021 : Accelerating Systems and ML for Science »
Anima Anandkumar -
2021 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Emine Kucukbenli · Gilles Louppe · Benjamin Nachman · Brian Nord · Savannah Thais -
2021 Poster: Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis »
Tianchang Shen · Jun Gao · Kangxue Yin · Ming-Yu Liu · Sanja Fidler -
2021 Poster: Meta-Adaptive Nonlinear Control: Theory and Algorithms »
Guanya Shi · Kamyar Azizzadenesheli · Michael O'Connell · Soon-Jo Chung · Yisong Yue -
2021 Poster: DeepGEM: Generalized Expectation-Maximization for Blind Inversion »
Angela Gao · Jorge Castellanos · Yisong Yue · Zachary Ross · Katherine Bouman -
2021 Poster: Iterative Amortized Policy Optimization »
Joseph Marino · Alexandre Piche · Alessandro Davide Ialongo · Yisong Yue -
2020 Workshop: Learning Meets Combinatorial Algorithms »
Marin Vlastelica · Jialin Song · Aaron Ferber · Brandon Amos · Georg Martius · Bistra Dilkina · Yisong Yue -
2020 : Climate Change and ML in the Private Sector »
Aisha Walcott-Bryant · Lea Boche · Anima Anandkumar -
2020 Workshop: Machine Learning and the Physical Sciences »
Anima Anandkumar · Kyle Cranmer · Shirley Ho · Mr. Prabhat · Lenka Zdeborová · Atilim Gunes Baydin · Juan Carrasquilla · Adji Bousso Dieng · Karthik Kashinath · Gilles Louppe · Brian Nord · Michela Paganini · Savannah Thais -
2020 Poster: Online Optimization with Memory and Competitive Control »
Guanya Shi · Yiheng Lin · Soon-Jo Chung · Yisong Yue · Adam Wierman -
2020 Poster: A General Large Neighborhood Search Framework for Solving Integer Linear Programs »
Jialin Song · ravi lanka · Yisong Yue · Bistra Dilkina -
2020 Poster: Learning Differentiable Programs with Admissible Neural Heuristics »
Ameesh Shah · Eric Zhan · Jennifer J Sun · Abhinav Verma · Yisong Yue · Swarat Chaudhuri -
2020 Poster: Neural Networks with Recurrent Generative Feedback »
Yujia Huang · James Gornet · Sihui Dai · Zhiding Yu · Tan Nguyen · Doris Tsao · Anima Anandkumar -
2020 Poster: Causal Discovery in Physical Systems from Videos »
Yunzhu Li · Antonio Torralba · Anima Anandkumar · Dieter Fox · Animesh Garg -
2020 Poster: Bongard-LOGO: A New Benchmark for Human-Level Concept Learning and Reasoning »
Weili Nie · Zhiding Yu · Lei Mao · Ankit Patel · Yuke Zhu · Anima Anandkumar -
2020 Spotlight: Bongard-LOGO: A New Benchmark for Human-Level Concept Learning and Reasoning »
Weili Nie · Zhiding Yu · Lei Mao · Ankit Patel · Yuke Zhu · Anima Anandkumar -
2020 : Research at NVIDIA: New Core AI and Machine Learning Lab »
Anima Anandkumar -
2020 Poster: Multipole Graph Neural Operator for Parametric Partial Differential Equations »
Zongyi Li · Nikola Kovachki · Kamyar Azizzadenesheli · Burigede Liu · Andrew Stuart · Kaushik Bhattacharya · Anima Anandkumar -
2020 Poster: Convolutional Tensor-Train LSTM for Spatio-Temporal Learning »
Jiahao Su · Wonmin Byeon · Jean Kossaifi · Furong Huang · Jan Kautz · Anima Anandkumar -
2020 Poster: On the distance between two neural networks and the stability of learning »
Jeremy Bernstein · Arash Vahdat · Yisong Yue · Ming-Yu Liu -
2020 Poster: The Power of Predictions in Online Control »
Chenkai Yu · Guanya Shi · Soon-Jo Chung · Yisong Yue · Adam Wierman -
2020 Poster: Logarithmic Regret Bound in Partially Observable Linear Dynamical Systems »
Sahin Lale · Kamyar Azizzadenesheli · Babak Hassibi · Anima Anandkumar -
2020 : Prof. Anima Anandkumar (California Institute of Technology and NVIDIA) »
Anima Anandkumar -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Panel - The Role of Communication at Large: Aparna Lakshmiratan, Jason Yosinski, Been Kim, Surya Ganguli, Finale Doshi-Velez »
Aparna Lakshmiratan · Finale Doshi-Velez · Surya Ganguli · Zachary Lipton · Michela Paganini · Anima Anandkumar · Jason Yosinski -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 : Opening Remarks »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Workshop: Safety and Robustness in Decision-making »
Mohammad Ghavamzadeh · Shie Mannor · Yisong Yue · Marek Petrik · Yinlam Chow -
2019 Poster: Competitive Gradient Descent »
Florian Schaefer · Anima Anandkumar -
2019 Poster: Imitation-Projected Programmatic Reinforcement Learning »
Abhinav Verma · Hoang Le · Yisong Yue · Swarat Chaudhuri -
2019 Poster: NAOMI: Non-Autoregressive Multiresolution Sequence Imputation »
Yukai Liu · Rose Yu · Stephan Zheng · Eric Zhan · Yisong Yue -
2019 Poster: Teaching Multiple Concepts to a Forgetful Learner »
Anette Hunziker · Yuxin Chen · Oisin Mac Aodha · Manuel Gomez Rodriguez · Andreas Krause · Pietro Perona · Yisong Yue · Adish Singla -
2019 Poster: Landmark Ordinal Embedding »
Nikhil Ghosh · Yuxin Chen · Yisong Yue -
2018 Workshop: Integration of Deep Learning Theories »
Richard Baraniuk · Anima Anandkumar · Stephane Mallat · Ankit Patel · nhật Hồ -
2018 : Yisong Yue »
Yisong Yue -
2018 Poster: Understanding the Role of Adaptivity in Machine Teaching: The Case of Version Space Learners »
Yuxin Chen · Adish Singla · Oisin Mac Aodha · Pietro Perona · Yisong Yue -
2018 Poster: A General Method for Amortizing Variational Filtering »
Joseph Marino · Milan Cvitkovic · Yisong Yue -
2017 : Coffee break and Poster Session II »
Mohamed Kane · Albert Haque · Vagelis Papalexakis · John Guibas · Peter Li · Carlos Arias · Eric Nalisnick · Padhraic Smyth · Frank Rudzicz · Xia Zhu · Theodore Willke · Noemie Elhadad · Hans Raffauf · Harini Suresh · Paroma Varma · Yisong Yue · Ognjen (Oggi) Rudovic · Luca Foschini · Syed Rameel Ahmad · Hasham ul Haq · Valerio Maggio · Giuseppe Jurman · Sonali Parbhoo · Pouya Bashivan · Jyoti Islam · Mirco Musolesi · Chris Wu · Alexander Ratner · Jared Dunnmon · Cristóbal Esteban · Aram Galstyan · Greg Ver Steeg · Hrant Khachatrian · Marc Górriz · Mihaela van der Schaar · Anton Nemchenko · Manasi Patwardhan · Tanay Tandon -
2016 : Anima Anandkumar »
Anima Anandkumar -
2016 Workshop: Learning with Tensors: Why Now and How? »
Anima Anandkumar · Rong Ge · Yan Liu · Maximilian Nickel · Qi (Rose) Yu -
2016 Workshop: Nonconvex Optimization for Machine Learning: Theory and Practice »
Hossein Mobahi · Anima Anandkumar · Percy Liang · Stefanie Jegelka · Anna Choromanska -
2016 Poster: Generating Long-term Trajectories Using Deep Hierarchical Networks »
Stephan Zheng · Yisong Yue · Patrick Lucey -
2016 Poster: Online and Differentially-Private Tensor Decomposition »
Yining Wang · Anima Anandkumar -
2015 : Opening and Overview »
Anima Anandkumar -
2015 Workshop: Non-convex Optimization for Machine Learning: Theory and Practice »
Anima Anandkumar · Niranjan Uma Naresh · Kamalika Chaudhuri · Percy Liang · Sewoong Oh -
2015 Poster: Smooth Interactive Submodular Set Cover »
Bryan He · Yisong Yue -
2015 Poster: Fast and Guaranteed Tensor Decomposition via Sketching »
Yining Wang · Hsiao-Yu Tung · Alexander Smola · Anima Anandkumar -
2015 Spotlight: Fast and Guaranteed Tensor Decomposition via Sketching »
Yining Wang · Hsiao-Yu Tung · Alexander Smola · Anima Anandkumar -
2015 Demonstration: Data-Driven Speech Animation »
Yisong Yue · Iain Matthews -
2014 Poster: Multi-Step Stochastic ADMM in High Dimensions: Applications to Sparse Optimization and Matrix Decomposition »
Hanie Sedghi · Anima Anandkumar · Edmond A Jonckheere -
2014 Poster: Non-convex Robust PCA »
Praneeth Netrapalli · Niranjan Uma Naresh · Sujay Sanghavi · Animashree Anandkumar · Prateek Jain -
2014 Spotlight: Non-convex Robust PCA »
Praneeth Netrapalli · Niranjan Uma Naresh · Sujay Sanghavi · Animashree Anandkumar · Prateek Jain -
2013 Workshop: Topic Models: Computation, Application, and Evaluation »
David Mimno · Amr Ahmed · Jordan Boyd-Graber · Ankur Moitra · Hanna Wallach · Alexander Smola · David Blei · Anima Anandkumar -
2013 Poster: When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity »
Anima Anandkumar · Daniel Hsu · Majid Janzamin · Sham M Kakade -
2012 Poster: Learning Mixtures of Tree Graphical Models »
Anima Anandkumar · Daniel Hsu · Furong Huang · Sham M Kakade -
2012 Poster: A Spectral Algorithm for Latent Dirichlet Allocation »
Anima Anandkumar · Dean P Foster · Daniel Hsu · Sham M Kakade · Yi-Kai Liu -
2012 Spotlight: A Spectral Algorithm for Latent Dirichlet Allocation »
Anima Anandkumar · Dean P Foster · Daniel Hsu · Sham M Kakade · Yi-Kai Liu -
2012 Poster: Latent Graphical Model Selection: Efficient Methods for Locally Tree-like Graphs »
Anima Anandkumar · Ragupathyraj Valluvan -
2011 Poster: High-Dimensional Graphical Model Selection: Tractable Graph Families and Necessary Conditions »
Animashree Anandkumar · Vincent Tan · Alan S Willsky -
2011 Oral: High-Dimensional Graphical Model Selection: Tractable Graph Families and Necessary Conditions »
Animashree Anandkumar · Vincent Tan · Alan S Willsky -
2011 Poster: Spectral Methods for Learning Multivariate Latent Tree Structure »
Anima Anandkumar · Kamalika Chaudhuri · Daniel Hsu · Sham M Kakade · Le Song · Tong Zhang