Timezone: »
Poster
Faster Differentially Private Samplers via Rényi Divergence Analysis of Discretized Langevin MCMC
Arun Ganesh · Kunal Talwar
Various differentially private algorithms instantiate the exponential mechanism, and require sampling from the distribution $\exp(-f)$ for a suitable function $f$. When the domain of the distribution is high-dimensional, this sampling can be challenging. Using heuristic sampling schemes such as Gibbs sampling does not necessarily lead to provable privacy. When $f$ is convex, techniques from log-concave sampling lead to polynomial-time algorithms, albeit with large polynomials. Langevin dynamics-based algorithms offer much faster alternatives under some distance measures such as statistical distance. In this work, we establish rapid convergence for these algorithms under distance measures more suitable for differential privacy. For smooth, strongly-convex $f$, we give the first results proving convergence in R\'enyi divergence. This gives us fast differentially private algorithms for such $f$. Our techniques and simple and generic and apply also to underdamped Langevin dynamics.
Author Information
Arun Ganesh (University of California Berkeley)
Kunal Talwar (Apple)
More from the Same Authors
-
2023 Poster: Fast Optimal Locally Private Mean Estimation via Random Projections »
Hilal Asi · Vitaly Feldman · Jelani Nelson · Huy Nguyen · Kunal Talwar -
2022 Panel: Panel 1C-5: Privacy of Noisy… & Near-Optimal Private and… »
Shyam Narayanan · Kunal Talwar -
2022 Poster: Mean Estimation with User-level Privacy under Data Heterogeneity »
Rachel Cummings · Vitaly Feldman · Audra McMillan · Kunal Talwar -
2022 Poster: FLAIR: Federated Learning Annotated Image Repository »
Congzheng Song · Filip Granqvist · Kunal Talwar -
2022 Poster: Subspace Recovery from Heterogeneous Data with Non-isotropic Noise »
John Duchi · Vitaly Feldman · Lunjia Hu · Kunal Talwar -
2022 Poster: Privacy of Noisy Stochastic Gradient Descent: More Iterations without More Privacy Loss »
Jason Altschuler · Kunal Talwar -
2020 Poster: Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses »
Raef Bassily · Vitaly Feldman · Cristóbal Guzmán · Kunal Talwar -
2020 Spotlight: Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses »
Raef Bassily · Vitaly Feldman · Cristóbal Guzmán · Kunal Talwar -
2020 Poster: Stochastic Optimization with Laggard Data Pipelines »
Naman Agarwal · Rohan Anil · Tomer Koren · Kunal Talwar · Cyril Zhang -
2020 Poster: On the Error Resistance of Hinge-Loss Minimization »
Kunal Talwar -
2019 : Private Stochastic Convex Optimization: Optimal Rates in Linear Time »
Vitaly Feldman · Tomer Koren · Kunal Talwar -
2019 Poster: Private Stochastic Convex Optimization with Optimal Rates »
Raef Bassily · Vitaly Feldman · Kunal Talwar · Abhradeep Guha Thakurta -
2019 Spotlight: Private Stochastic Convex Optimization with Optimal Rates »
Raef Bassily · Vitaly Feldman · Kunal Talwar · Abhradeep Guha Thakurta -
2019 Poster: Computational Separations between Sampling and Optimization »
Kunal Talwar