Timezone: »

Neural FFTs for Universal Texture Image Synthesis
Morteza Mardani · Guilin Liu · Aysegul Dundar · Shiqiu Liu · Andrew Tao · Bryan Catanzaro

Wed Dec 09 09:00 PM -- 11:00 PM (PST) @ Poster Session 4 #1233

Synthesizing larger texture images from a smaller exemplar is an important task in graphics and vision. The conventional CNNs, recently adopted for synthesis, require to train and test on the same set of images and fail to generalize to unseen images. This is mainly because those CNNs fully rely on convolutional and upsampling layers that operate locally and not suitable for a task as global as texture synthesis. In this work, inspired by the repetitive nature of texture patterns, we find that texture synthesis can be viewed as (local) \textit{upsampling} in the Fast Fourier Transform (FFT) domain. However, FFT of natural images exhibits high dynamic range and lacks local correlations. Therefore, to train CNNs we design a framework to perform FFT upsampling in feature space using deformable convolutions. Such design allows our framework to generalize to unseen images, and synthesize textures in a single pass. Extensive evaluations confirm that our method achieves state-of-the-art performance both quantitatively and qualitatively.

Author Information

Morteza Mardani (NVIDIA)
Guilin Liu (NVIDIA)
Aysegul Dundar (NVIDIA)
Shiqiu Liu (NVIDIA)
Andrew Tao (Nvidia Corporation)
Bryan Catanzaro (NVIDIA)

More from the Same Authors