Timezone: »
Neuroimaging studies produce gigabytes of spatio-temporal data for a small number of participants and stimuli. Recent work increasingly suggests that the common practice of averaging across participants and stimuli leaves out systematic and meaningful information. We propose Neural Topographic Factor Analysis (NTFA), a probabilistic factor analysis model that infers embeddings for participants and stimuli. These embeddings allow us to reason about differences between participants and stimuli as signal rather than noise. We evaluate NTFA on data from an in-house pilot experiment, as well as two publicly available datasets. We demonstrate that inferring representations for participants and stimuli improves predictive generalization to unseen data when compared to previous topographic methods. We also demonstrate that the inferred latent factor representations are useful for downstream tasks such as multivoxel pattern analysis and functional connectivity.
Author Information
Eli Sennesh (Northeastern University)
I work in the Probabilistic Modeling Lab at Northeastern University’s CCIS, as well as the Interdisciplinary Affective Science Laboratory. We use the tools of machine learning, statistics, and computation to study the deep questions at the heart of neuroscience, cognition, and agency. We’re making the world a better place through probabilistic programming!
Zulqarnain Khan (Northeastern University)
PhD Candidate at Machine Learning Lab at Northeastern University with Prof. Jennifer Dy. Interests include Clustering, Graphical Models, Factor Analysis, Variational Inference.
Yiyu Wang (Northeastern University)
J Benjamin Hutchinson (University of Oregon)
Ajay Satpute (Northeastern)
Jennifer Dy (Northeastern University)
Jan-Willem van de Meent (Northeastern University)
More from the Same Authors
-
2021 Spotlight: Reliable Estimation of KL Divergence using a Discriminator in Reproducing Kernel Hilbert Space »
Sandesh Ghimire · Aria Masoomi · Jennifer Dy -
2021 : Unsupervised Approaches for Out-Of-Distribution Dermoscopic Lesion Detection »
Max Torop · Sandesh Ghimire · Dana H Brooks · Octavia Camps · Milind Rajadhyaksha · Kivanc Kose · Jennifer Dy -
2022 : Understanding Optimization Challenges when Encoding to Geometric Structures »
Babak Esmaeili · Robin Walters · Heiko Zimmermann · Jan-Willem van de Meent -
2022 Poster: SparCL: Sparse Continual Learning on the Edge »
Zifeng Wang · Zheng Zhan · Yifan Gong · Geng Yuan · Wei Niu · Tong Jian · Bin Ren · Stratis Ioannidis · Yanzhi Wang · Jennifer Dy -
2021 Poster: Reliable Estimation of KL Divergence using a Discriminator in Reproducing Kernel Hilbert Space »
Sandesh Ghimire · Aria Masoomi · Jennifer Dy -
2021 Poster: Nested Variational Inference »
Heiko Zimmermann · Hao Wu · Babak Esmaeili · Jan-Willem van de Meent -
2021 Poster: Revisiting Hilbert-Schmidt Information Bottleneck for Adversarial Robustness »
Zifeng Wang · Tong Jian · Aria Masoomi · Stratis Ioannidis · Jennifer Dy -
2020 Poster: Instance-wise Feature Grouping »
Aria Masoomi · Chieh T Wu · Tingting Zhao · Zifeng Wang · Peter Castaldi · Jennifer Dy -
2019 : Lunch break & Poster session »
Breandan Considine · Michael Innes · Du Phan · Dougal Maclaurin · Robin Manhaeve · Alexey Radul · Shashi Gowda · Ekansh Sharma · Eli Sennesh · Maxim Kochurov · Gordon Plotkin · Thomas Wiecki · Navjot Kukreja · Chung-chieh Shan · Matthew Johnson · Dan Belov · Neeraj Pradhan · Wannes Meert · Angelika Kimmig · Luc De Raedt · Brian Patton · Matthew Hoffman · Rif A. Saurous · Daniel Roy · Eli Bingham · Martin Jankowiak · Colin Carroll · Junpeng Lao · Liam Paull · Martin Abadi · Angel Rojas Jimenez · JP Chen -
2019 : Jan-Willem van de Meent - Compositional Methods for Learning and Inference in Deep Probabilistic Programs »
Jan-Willem van de Meent -
2019 Poster: Solving Interpretable Kernel Dimensionality Reduction »
Chieh Wu · Jared Miller · Yale Chang · Mario Sznaier · Jennifer Dy -
2018 : Poster Session »
Lorenzo Masoero · Tammo Rukat · Runjing Liu · Sayak Ray Chowdhury · Daniel Coelho de Castro · Claudia Wehrhahn · Feras Saad · Archit Verma · Kelvin Hsu · Irineo Cabreros · Sandhya Prabhakaran · Yiming Sun · Maxime Rischard · Linfeng Liu · Adam Farooq · Jeremiah Liu · Melanie F. Pradier · Diego Romeres · Neill Campbell · Kai Xu · Mehmet M Dundar · Tucker Keuter · Prashnna Gyawali · Eli Sennesh · Alessandro De Palma · Daniel Flam-Shepherd · Takatomi Kubo -
2017 Poster: Learning Disentangled Representations with Semi-Supervised Deep Generative Models »
Siddharth Narayanaswamy · Brooks Paige · Jan-Willem van de Meent · Alban Desmaison · Noah Goodman · Pushmeet Kohli · Frank Wood · Philip Torr -
2016 : Probabilistic structure discovery in time series data »
David Janz · Brooks Paige · Thomas Rainforth · Jan-Willem van de Meent -
2016 Poster: Bayesian Optimization for Probabilistic Programs »
Thomas Rainforth · Tuan Anh Le · Jan-Willem van de Meent · Michael A Osborne · Frank Wood -
2015 : Black Box Policy Search with Probabilistic Programs »
Jan-Willem van de Meent -
2015 Workshop: Black box learning and inference »
Josh Tenenbaum · Jan-Willem van de Meent · Tejas Kulkarni · S. M. Ali Eslami · Brooks Paige · Frank Wood · Zoubin Ghahramani