Timezone: »
Spotlight
An Optimal Elimination Algorithm for Learning a Best Arm
Avinatan Hassidim · Ron Kupfer · Yaron Singer
Tue Dec 08 07:30 AM -- 07:40 AM (PST) @ Orals & Spotlights: Learning Theory
We consider the classic problem of $(\epsilon,\delta)$-\texttt{PAC} learning a best arm where the goal is to identify with confidence $1-\delta$ an arm whose mean is an $\epsilon$-approximation to that of the highest mean arm in a multi-armed bandit setting.
This problem is one of the most fundamental problems in statistics and learning theory, yet somewhat surprisingly its worst case sample complexity is not well understood. In this paper we propose a new approach for $(\epsilon,\delta)$-\texttt{PAC} learning a best arm. This approach leads to an algorithm whose sample complexity converges to \emph{exactly} the optimal sample complexity of $(\epsilon,\delta)$-learning the mean of $n$ arms separately and we complement this result with a conditional matching lower bound. More specifically:
\begin{itemize}
\item The algorithm's sample complexity converges to \emph{exactly} $\frac{n}{2\epsilon^2}\log \frac{1}{\delta}$ as $n$ grows and $\delta \geq \frac{1}{n}$;
%
\item We prove that no elimination algorithm obtains sample complexity arbitrarily lower than $\frac{n}{2\epsilon^2}\log \frac{1}{\delta}$. Elimination algorithms is a broad class of $(\epsilon,\delta)$-\texttt{PAC} best arm learning algorithms that includes many algorithms in the literature.
\end{itemize}
When $n$ is independent of $\delta$ our approach yields an algorithm whose sample complexity converges to $\frac{2n}{\epsilon^2} \log \frac{1}{\delta}$ as $n$ grows. In comparison with the best known algorithm for this problem our approach improves the sample complexity by a factor of over 1500 and over 6000 when $\delta\geq \frac{1}{n}$.
Author Information
Avinatan Hassidim (Google)
Ron Kupfer (The Hebrew University of Jerusalem)
Yaron Singer (Harvard University)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: An Optimal Elimination Algorithm for Learning a Best Arm »
Tue. Dec 8th 05:00 -- 07:00 PM Room Poster Session 1 #247
More from the Same Authors
-
2020 Poster: The Adaptive Complexity of Maximizing a Gross Substitutes Valuation »
Ron Kupfer · Sharon Qian · Eric Balkanski · Yaron Singer -
2020 Spotlight: The Adaptive Complexity of Maximizing a Gross Substitutes Valuation »
Ron Kupfer · Sharon Qian · Eric Balkanski · Yaron Singer -
2020 Poster: Investigating Gender Bias in Language Models Using Causal Mediation Analysis »
Jesse Vig · Sebastian Gehrmann · Yonatan Belinkov · Sharon Qian · Daniel Nevo · Yaron Singer · Stuart Shieber -
2020 Spotlight: Investigating Gender Bias in Language Models Using Causal Mediation Analysis »
Jesse Vig · Sebastian Gehrmann · Yonatan Belinkov · Sharon Qian · Daniel Nevo · Yaron Singer · Stuart Shieber -
2019 Poster: Fast Parallel Algorithms for Statistical Subset Selection Problems »
Sharon Qian · Yaron Singer -
2019 Poster: Learning to Screen »
Alon Cohen · Avinatan Hassidim · Haim Kaplan · Yishay Mansour · Shay Moran -
2018 Poster: Optimization for Approximate Submodularity »
Yaron Singer · Avinatan Hassidim -
2018 Poster: Non-monotone Submodular Maximization in Exponentially Fewer Iterations »
Eric Balkanski · Adam Breuer · Yaron Singer -
2017 Workshop: Discrete Structures in Machine Learning »
Yaron Singer · Jeff A Bilmes · Andreas Krause · Stefanie Jegelka · Amin Karbasi -
2017 Poster: Minimizing a Submodular Function from Samples »
Eric Balkanski · Yaron Singer -
2017 Poster: Robust Optimization for Non-Convex Objectives »
Robert S Chen · Brendan Lucier · Yaron Singer · Vasilis Syrgkanis -
2017 Oral: Robust Optimization for Non-Convex Objectives »
Robert S Chen · Brendan Lucier · Yaron Singer · Vasilis Syrgkanis -
2017 Poster: The Importance of Communities for Learning to Influence »
Eric Balkanski · Nicole Immorlica · Yaron Singer -
2016 Poster: Maximization of Approximately Submodular Functions »
Thibaut Horel · Yaron Singer -
2016 Poster: The Power of Optimization from Samples »
Eric Balkanski · Aviad Rubinstein · Yaron Singer -
2015 Poster: Learnability of Influence in Networks »
Harikrishna Narasimhan · David Parkes · Yaron Singer -
2015 Poster: Information-theoretic lower bounds for convex optimization with erroneous oracles »
Yaron Singer · Jan Vondrak -
2015 Spotlight: Information-theoretic lower bounds for convex optimization with erroneous oracles »
Yaron Singer · Jan Vondrak -
2014 Workshop: Discrete Optimization in Machine Learning »
Jeffrey A Bilmes · Andreas Krause · Stefanie Jegelka · S Thomas McCormick · Sebastian Nowozin · Yaron Singer · Dhruv Batra · Volkan Cevher