`

Timezone: »

 
Poster
Goal-directed Generation of Discrete Structures with Conditional Generative Models
Amina Mollaysa · Brooks Paige · Alexandros Kalousis

Wed Dec 09 09:00 AM -- 11:00 AM (PST) @ Poster Session 3 #803

Despite recent advances, goal-directed generation of structured discrete data remains challenging. For problems such as program synthesis (generating source code) and materials design (generating molecules), finding examples which satisfy desired constraints or exhibit desired properties is difficult. In practice, expensive heuristic search or reinforcement learning algorithms are often employed. In this paper, we investigate the use of conditional generative models which directly attack this inverse problem, by modeling the distribution of discrete structures given properties of interest. Unfortunately, the maximum likelihood training of such models often fails with the samples from the generative model inadequately respecting the input properties. To address this, we introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward. We avoid high-variance score-function estimators that would otherwise be required by sampling from an approximation to the normalized rewards, allowing simple Monte Carlo estimation of model gradients. We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value. In both cases, we find improvements over maximum likelihood estimation and other baselines.

Author Information

Amina Mollaysa (University of Geneva,University of Applied Sciences Western Switzerland)
Brooks Paige (UCL)
Alexandros Kalousis (University of Applied Sciences, Western Switzerland)

More from the Same Authors

  • 2021 : MSA-Conditioned Generative Protein Language Models for Fitness Landscape Modelling and Design »
    Alex Hawkins-Hooker · David Jones · Brooks Paige
  • 2020 Workshop: Machine Learning for Molecules »
    José Miguel Hernández-Lobato · Matt Kusner · Brooks Paige · Marwin Segler · Jennifer Wei
  • 2020 Poster: Barking up the right tree: an approach to search over molecule synthesis DAGs »
    John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato
  • 2020 Spotlight: Barking up the right tree: an approach to search over molecule synthesis DAGs »
    John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato
  • 2019 Poster: Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative Models »
    Yuge Shi · Siddharth N · Brooks Paige · Philip Torr
  • 2018 Workshop: Machine Learning for Molecules and Materials »
    José Miguel Hernández-Lobato · Klaus-Robert Müller · Brooks Paige · Matt Kusner · Stefan Chmiela · Kristof Schütt
  • 2018 : Poster Session 1 + Coffee »
    Tom Van de Wiele · Rui Zhao · J. Fernando Hernandez-Garcia · Fabio Pardo · Xian Yeow Lee · Xiaolin Andy Li · Marcin Andrychowicz · Jie Tang · Suraj Nair · Juhyeon Lee · Cédric Colas · S. M. Ali Eslami · Yen-Chen Wu · Stephen McAleer · Ryan Julian · Yang Xue · Matthia Sabatelli · Pranav Shyam · Alexandros Kalousis · Giovanni Montana · Emanuele Pesce · Felix Leibfried · Zhanpeng He · Chunxiao Liu · Yanjun Li · Yoshihide Sawada · Alexander Pashevich · Tejas Kulkarni · Keiran Paster · Luca Rigazio · Quan Vuong · Hyunggon Park · Minhae Kwon · Rivindu Weerasekera · Shamane Siriwardhanaa · Rui Wang · Ozsel Kilinc · Keith Ross · Yizhou Wang · Simon Schmitt · Thomas Anthony · Evan Cater · Forest Agostinelli · Tegg Sung · Shirou Maruyama · Alexander Shmakov · Devin Schwab · Mohammad Firouzi · Glen Berseth · Denis Osipychev · Jesse Farebrother · Jianlan Luo · William Agnew · Peter Vrancx · Jonathan Heek · Catalin Ionescu · Haiyan Yin · Megumi Miyashita · Nathan Jay · Noga H. Rotman · Sam Leroux · Shaileshh Bojja Venkatakrishnan · Henri Schmidt · Jack Terwilliger · Ishan Durugkar · Jonathan Sauder · David Kas · Arash Tavakoli · Alain-Sam Cohen · Philip Bontrager · Adam Lerer · Thomas Paine · Ahmed Khalifa · Ruben Rodriguez · Avi Singh · Yiming Zhang
  • 2018 : Coffee Break and Poster Session I »
    Pim de Haan · Bin Wang · Dequan Wang · Aadil Hayat · Ibrahim Sobh · Muhammad Asif Rana · Thibault Buhet · Nicholas Rhinehart · Arjun Sharma · Alex Bewley · Michael Kelly · Lionel Blondé · Ozgur S. Oguz · Vaibhav Viswanathan · Jeroen Vanbaar · Konrad Żołna · Negar Rostamzadeh · Rowan McAllister · Sanjay Thakur · Alexandros Kalousis · Chelsea Sidrane · Sujoy Paul · Daphne Chen · Michal Garmulewicz · Henryk Michalewski · Coline Devin · Hongyu Ren · Jiaming Song · Wen Sun · Hanzhang Hu · Wulong Liu · Emilie Wirbel
  • 2017 Poster: Learning Disentangled Representations with Semi-Supervised Deep Generative Models »
    Siddharth Narayanaswamy · Brooks Paige · Jan-Willem van de Meent · Alban Desmaison · Noah Goodman · Pushmeet Kohli · Frank Wood · Philip Torr
  • 2012 Poster: Parametric Local Metric Learning for Nearest Neighbor Classification »
    Jun Wang · Alexandros Kalousis · Adam Woznica
  • 2011 Poster: Metric Learning with Multiple Kernels »
    Jun Wang · Huyen T Do · Adam Woznica · Alexandros Kalousis