Timezone: »
Trajectory prediction for scenes with multiple agents and entities is a challenging problem in numerous domains such as traffic prediction, pedestrian tracking and path planning. We present a general architecture to address this challenge which models the crucial inductive biases of motion, namely, inertia, relative motion, intents and interactions. Specifically, we propose a relational model to flexibly model interactions between agents in diverse environments. Since it is well-known that human decision making is fuzzy by nature, at the core of our model lies a novel attention mechanism which models interactions by making continuous-valued (fuzzy) decisions and learning the corresponding responses. Our architecture demonstrates significant performance gains over existing state-of-the-art predictive models in diverse domains such as human crowd trajectories, US freeway traffic, NBA sports data and physics datasets. We also present ablations and augmentations to understand the decision-making process and the source of gains in our model.
Author Information
Nitin Kamra (University of Southern California)
Hao Zhu (Peking University)
Dweep Trivedi (University of Southern California)
Ming Zhang (Peking University)
Yan Liu (University of Southern California)
More from the Same Authors
-
2022 : A Synthetic Limit Order Book Dataset for Benchmarking Forecasting Algorithms under Distributional Shift »
Defu Cao · Yousef El-Laham · Loc Trinh · Svitlana Vyetrenko · Yan Liu -
2022 Poster: Sparse Interaction Additive Networks via Feature Interaction Detection and Sparse Selection »
James Enouen · Yan Liu -
2022 Poster: Counterfactual Neural Temporal Point Process for Estimating Causal Influence of Misinformation on Social Media »
Yizhou Zhang · Defu Cao · Yan Liu -
2021 Poster: VigDet: Knowledge Informed Neural Temporal Point Process for Coordination Detection on Social Media »
Yizhou Zhang · Karishma Sharma · Yan Liu -
2021 Poster: Learning to Synthesize Programs as Interpretable and Generalizable Policies »
Dweep Trivedi · Jesse Zhang · Shao-Hua Sun · Joseph Lim -
2020 : 13 - Gradient-based Optimization for Multi-resource Spatial Coverage »
Nitin Kamra -
2020 Poster: How does This Interaction Affect Me? Interpretable Attribution for Feature Interactions »
Michael Tsang · Sirisha Rambhatla · Yan Liu -
2019 Workshop: Learning with Temporal Point Processes »
Manuel Rodriguez · Le Song · Isabel Valera · Yan Liu · Abir De · Hongyuan Zha -
2018 Poster: Neural Interaction Transparency (NIT): Disentangling Learned Interactions for Improved Interpretability »
Michael Tsang · Hanpeng Liu · Sanjay Purushotham · Pavankumar Murali · Yan Liu -
2017 : Posters 1 »
J.P. Lewis · Housam Khalifa Bashier Babiker · Zhongang Qi · Laura Rieger · Ning Xie · Filip Dabek · Koushik Nagasubramanian · Bolei Zhou · Dieuwke Hupkes · CHUN-HAO CHANG · Pamela K Douglas · Enea Ceolini · Derek Doran · Yan Liu · Fuxin Li · Randolph Goebel -
2016 Workshop: Learning with Tensors: Why Now and How? »
Anima Anandkumar · Rong Ge · Yan Liu · Maximilian Nickel · Qi (Rose) Yu -
2016 Poster: SPALS: Fast Alternating Least Squares via Implicit Leverage Scores Sampling »
Dehua Cheng · Richard Peng · Yan Liu · Kimis Perros -
2016 Poster: Learning Influence Functions from Incomplete Observations »
Xinran He · Ke Xu · David Kempe · Yan Liu -
2014 Poster: Fast Multivariate Spatio-temporal Analysis via Low Rank Tensor Learning »
Mohammad Taha Bahadori · Qi (Rose) Yu · Yan Liu -
2014 Spotlight: Fast Multivariate Spatio-temporal Analysis via Low Rank Tensor Learning »
Mohammad Taha Bahadori · Qi (Rose) Yu · Yan Liu