Timezone: »

Quantized Variational Inference
Amir Dib

Wed Dec 09 09:00 AM -- 11:00 AM (PST) @ Poster Session 3 #853

We present Quantized Variational Inference, a new algorithm for Evidence Lower Bound minimization. We show how Optimal Voronoi Tesselation produces variance free gradients for Evidence Lower Bound (ELBO) optimization at the cost of introducing asymptotically decaying bias. Subsequently, we propose a Richardson extrapolation type method to improve this bound. We show that using the Quantized Variational Inference framework leads to fast convergence for both score function and the reparametrized gradient estimator at a comparable computational cost. Finally, we propose several experiments to assess the performance of our method and its limitations.

Author Information

Amir Dib (ENS Paris-Saclay, Université Paris-Saclay)