Timezone: »
Progress in the field of machine learning has been fueled by the introduction of benchmark datasets pushing the limits of existing algorithms. Enabling the design of datasets to test specific properties and failure modes of learning algorithms is thus a problem of high interest, as it has a direct impact on innovation in the field. In this sense, we introduce Synbols — Synthetic Symbols — a tool for rapidly generating new datasets with a rich composition of latent features rendered in low resolution images. Synbols leverages the large amount of symbols available in the Unicode standard and the wide range of artistic font provided by the open font community. Our tool's high-level interface provides a language for rapidly generating new distributions on the latent features, including various types of textures and occlusions. To showcase the versatility of Synbols, we use it to dissect the limitations and flaws in standard learning algorithms in various learning setups including supervised learning, active learning, out of distribution generalization, unsupervised representation learning, and object counting.
Author Information
Alexandre Lacoste (Element AI)
Pau Rodríguez López (CVC UAB)
Frederic Branchaud-Charron (Element AI)
Parmida Atighehchian (ElementAI)
Massimo Caccia (MILA)
Issam Hadj Laradji (McGill + Element AI)
Alexandre Drouin (Element AI)
Matthew Craddock (Element AI)
Laurent Charlin (MILA / U.Montreal)
David Vázquez (Element AI)
More from the Same Authors
-
2020 : Counting Cows: Tracking Illegal Cattle Ranching From High-Resolution Satellite Imagery »
Issam Hadj Laradji -
2021 : Toward Foundation Models for Earth Monitoring: Proposal for a Climate Change Benchmark »
Alexandre Lacoste · Evan Sherwin · Hannah Kerner · Hamed Alemohammad · Björn Lütjens · Jeremy Irvin · David Dao · Alex Chang · Mehmet Gunturkun · Alexandre Drouin · Pau Rodriguez · David Vazquez -
2021 : Typing assumptions improve identification in causal discovery »
Philippe Brouillard · Perouz Taslakian · Alexandre Lacoste · Sébastien Lachapelle · Alexandre Drouin -
2022 : Attention for Compositional Modularity »
Oleksiy Ostapenko · Pau Rodriguez · Alexandre Lacoste · Laurent Charlin -
2022 : Constraining Low-level Representations to Define Effective Confidence Scores »
Joao Monteiro · Pau Rodriguez · Pierre-Andre Noel · Issam Hadj Laradji · David Vázquez -
2021 : Machine Learning for Combinatorial Optimization + Q&A »
Maxime Gasse · Simon Bowly · Chris Cameron · Quentin Cappart · Jonas Charfreitag · Laurent Charlin · Shipra Agrawal · Didier Chetelat · Justin Dumouchelle · Ambros Gleixner · Aleksandr Kazachkov · Elias Khalil · Pawel Lichocki · Andrea Lodi · Miles Lubin · Christopher Morris · Dimitri Papageorgiou · Augustin Parjadis · Sebastian Pokutta · Antoine Prouvost · Yuandong Tian · Lara Scavuzzo · Giulia Zarpellon -
2021 Poster: Continual Learning via Local Module Composition »
Oleksiy Ostapenko · Pau Rodriguez · Massimo Caccia · Laurent Charlin -
2021 Poster: Pretraining Representations for Data-Efficient Reinforcement Learning »
Max Schwarzer · Nitarshan Rajkumar · Michael Noukhovitch · Ankesh Anand · Laurent Charlin · R Devon Hjelm · Philip Bachman · Aaron Courville -
2021 Poster: Learning where to learn: Gradient sparsity in meta and continual learning »
Johannes von Oswald · Dominic Zhao · Seijin Kobayashi · Simon Schug · Massimo Caccia · Nicolas Zucchet · João Sacramento -
2020 : DeepFish: A realistic fish‑habitat dataset to evaluate algorithms for underwater visual analysis »
Alzayat Saleh · Issam Hadj Laradji · David Vázquez -
2020 Poster: Online Fast Adaptation and Knowledge Accumulation (OSAKA): a New Approach to Continual Learning »
Massimo Caccia · Pau Rodriguez · Oleksiy Ostapenko · Fabrice Normandin · Min Lin · Lucas Page-Caccia · Issam Hadj Laradji · Irina Rish · Alexandre Lacoste · David Vázquez · Laurent Charlin -
2020 Poster: Differentiable Causal Discovery from Interventional Data »
Philippe Brouillard · Sébastien Lachapelle · Alexandre Lacoste · Simon Lacoste-Julien · Alexandre Drouin -
2020 Spotlight: Differentiable Causal Discovery from Interventional Data »
Philippe Brouillard · Sébastien Lachapelle · Alexandre Lacoste · Simon Lacoste-Julien · Alexandre Drouin -
2020 Session: Orals & Spotlights Track 16: Continual/Meta/Misc Learning »
Laurent Charlin · Cedric Archambeau -
2020 Poster: In search of robust measures of generalization »
Gintare Karolina Dziugaite · Alexandre Drouin · Brady Neal · Nitarshan Rajkumar · Ethan Caballero · Linbo Wang · Ioannis Mitliagkas · Daniel Roy -
2019 Workshop: Tackling Climate Change with ML »
David Rolnick · Priya Donti · Lynn Kaack · Alexandre Lacoste · Tegan Maharaj · Andrew Ng · John Platt · Jennifer Chayes · Yoshua Bengio -
2019 Poster: Online Continual Learning with Maximal Interfered Retrieval »
Rahaf Aljundi · Eugene Belilovsky · Tinne Tuytelaars · Laurent Charlin · Massimo Caccia · Min Lin · Lucas Page-Caccia -
2019 Poster: Exact Combinatorial Optimization with Graph Convolutional Neural Networks »
Maxime Gasse · Didier Chetelat · Nicola Ferroni · Laurent Charlin · Andrea Lodi -
2018 : Poster Session 1 (note there are numerous missing names here, all papers appear in all poster sessions) »
Akhilesh Gotmare · Kenneth Holstein · Jan Brabec · Michal Uricar · Kaleigh Clary · Cynthia Rudin · Sam Witty · Andrew Ross · Shayne O'Brien · Babak Esmaeili · Jessica Forde · Massimo Caccia · Ali Emami · Scott Jordan · Bronwyn Woods · D. Sculley · Rebekah Overdorf · Nicolas Le Roux · Peter Henderson · Brandon Yang · Tzu-Yu Liu · David Jensen · Niccolo Dalmasso · Weitang Liu · Paul Marc TRICHELAIR · Jun Ki Lee · Akanksha Atrey · Matt Groh · Yotam Hechtlinger · Emma Tosch -
2018 Poster: Towards Deep Conversational Recommendations »
Raymond Li · Samira Ebrahimi Kahou · Hannes Schulz · Vincent Michalski · Laurent Charlin · Chris Pal -
2018 Poster: Improving Explorability in Variational Inference with Annealed Variational Objectives »
Chin-Wei Huang · Shawn Tan · Alexandre Lacoste · Aaron Courville -
2018 Poster: TADAM: Task dependent adaptive metric for improved few-shot learning »
Boris Oreshkin · Pau Rodríguez López · Alexandre Lacoste -
2014 Poster: Content-based recommendations with Poisson factorization »
Prem Gopalan · Laurent Charlin · David Blei -
2006 Poster: Automated Hierarchy Discovery for Planning in Partially Observable Domains »
Laurent Charlin · Pascal Poupart · Romy Shioda