Timezone: »

Synbols: Probing Learning Algorithms with Synthetic Datasets
Alexandre Lacoste · Pau Rodríguez López · Frederic Branchaud-Charron · Parmida Atighehchian · Massimo Caccia · Issam Hadj Laradji · Alexandre Drouin · Matthew Craddock · Laurent Charlin · David Vázquez

Wed Dec 09 09:00 AM -- 11:00 AM (PST) @ Poster Session 3 #839

Progress in the field of machine learning has been fueled by the introduction of benchmark datasets pushing the limits of existing algorithms. Enabling the design of datasets to test specific properties and failure modes of learning algorithms is thus a problem of high interest, as it has a direct impact on innovation in the field. In this sense, we introduce Synbols — Synthetic Symbols — a tool for rapidly generating new datasets with a rich composition of latent features rendered in low resolution images. Synbols leverages the large amount of symbols available in the Unicode standard and the wide range of artistic font provided by the open font community. Our tool's high-level interface provides a language for rapidly generating new distributions on the latent features, including various types of textures and occlusions. To showcase the versatility of Synbols, we use it to dissect the limitations and flaws in standard learning algorithms in various learning setups including supervised learning, active learning, out of distribution generalization, unsupervised representation learning, and object counting.

Author Information

Alexandre Lacoste (Element AI)
Pau Rodríguez López (CVC UAB)
Frederic Branchaud-Charron (Element AI)
Parmida Atighehchian (ElementAI)
Massimo Caccia (MILA)
Issam Hadj Laradji (McGill + Element AI)
Alexandre Drouin (Element AI)
Matthew Craddock (Element AI)
Laurent Charlin (MILA / U.Montreal)
David Vázquez (Element AI)

More from the Same Authors