Timezone: »
Offline methods for reinforcement learning have a potential to help bridge the gap between reinforcement learning research and real-world applications. They make it possible to learn policies from offline datasets, thus overcoming concerns associated with online data collection in the real-world, including cost, safety, or ethical concerns. In this paper, we propose a benchmark called RL Unplugged to evaluate and compare offline RL methods. RL Unplugged includes data from a diverse range of domains including games e.g., Atari benchmark) and simulated motor control problems (e.g., DM Control Suite). The datasets include domains that are partially or fully observable, use continuous or discrete actions, and have stochastic vs. deterministic dynamics. We propose detailed evaluation protocols for each domain in RL Unplugged and provide an extensive analysis of supervised learning and offline RL methods using these protocols. We will release data for all our tasks and open-source all algorithms presented in this paper. We hope that our suite of benchmarks will increase the reproducibility of experiments and make it possible to study challenging tasks with a limited computational budget, thus making RL research both more systematic and more accessible across the community. Moving forward, we view RL Unplugged as a living benchmark suite that will evolve and grow with datasets contributed by the research community and ourselves. Our project page is available on github.
Author Information
Caglar Gulcehre (Deepmind)
Ziyu Wang (Google Brain)
Alexander Novikov (DeepMind)
Thomas Paine (DeepMind)
Sergio Gómez (DeepMind)
Konrad Zolna (DeepMind)
Rishabh Agarwal (Google Research, Brain Team)
My research work mainly revolves around deep reinforcement learning (RL), often with the goal of making RL methods suitable for real-world problems, and includes an outstanding paper award at NeurIPS.
Josh Merel (DeepMind)
Daniel Mankowitz (DeepMind)
Cosmin Paduraru (DeepMind)
Gabriel Dulac-Arnold (Google Research)
Jerry Li (Deepmind)
Industrial researcher specializes in Generative models, style transfer, and RL.
Mohammad Norouzi (Google Brain)
Matthew Hoffman (DeepMind)
Nicolas Heess (Google DeepMind)
Nando de Freitas (DeepMind)
More from the Same Authors
-
2021 Spotlight: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 : Is Curiosity All You Need? On the Utility of Emergent Behaviours from Curious Exploration »
Oliver Groth · Markus Wulfmeier · Giulia Vezzani · Vibhavari Dasagi · Tim Hertweck · Roland Hafner · Nicolas Heess · Martin Riedmiller -
2021 : Palette: Image-to-Image Diffusion Models »
Chitwan Saharia · William Chan · Huiwen Chang · Chris Lee · Jonathan Ho · Tim Salimans · David Fleet · Mohammad Norouzi -
2021 : StarCraft II Unplugged: Large Scale Offline Reinforcement Learning »
Michael Mathieu · Sherjil Ozair · Srivatsan Srinivasan · Caglar Gulcehre · Shangtong Zhang · Ray Jiang · Tom Paine · Konrad Żołna · Julian Schrittwieser · David Choi · Petko I Georgiev · Daniel Toyama · Roman Ring · Igor Babuschkin · Timo Ewalds · · Aaron van den Oord · Wojciech Czarnecki · Nando de Freitas · Oriol Vinyals -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : Learning Transferable Motor Skills with Hierarchical Latent Mixture Policies »
Dushyant Rao · Fereshteh Sadeghi · Leonard Hasenclever · Markus Wulfmeier · Martina Zambelli · Giulia Vezzani · Dhruva Tirumala · Yusuf Aytar · Josh Merel · Nicolas Heess · Raia Hadsell -
2021 : Behavior Predictive Representations for Generalization in Reinforcement Learning »
Siddhant Agarwal · Aaron Courville · Rishabh Agarwal -
2021 : Palette: Image-to-Image Diffusion Models »
Chitwan Saharia · William Chan · Huiwen Chang · Chris Lee · Jonathan Ho · Tim Salimans · David Fleet · Mohammad Norouzi -
2021 : Importance of Representation Learning for Off-Policy Fitted Q-Evaluation »
Xian Wu · Nevena Lazic · Dong Yin · Cosmin Paduraru -
2021 : Offline Meta-Reinforcement Learning for Industrial Insertion »
Tony Zhao · Jianlan Luo · Oleg Sushkov · Rugile Pevceviciute · Nicolas Heess · Jonathan Scholz · Stefan Schaal · Sergey Levine -
2022 : A Novel Stochastic Gradient Descent Algorithm for LearningPrincipal Subspaces »
Charline Le Lan · Joshua Greaves · Jesse Farebrother · Mark Rowland · Fabian Pedregosa · Rishabh Agarwal · Marc Bellemare -
2022 : Controlling Commercial Cooling Systems Using Reinforcement Learning »
Jerry Luo · Cosmin Paduraru · Octavian Voicu · Yuri Chervonyi · Scott Munns · Jerry Li · Crystal Qian · Praneet Dutta · Daniel Mankowitz · Jared Quincy Davis · Ningjia Wu · Xingwei Yang · Chu-Ming Chang · Ted Li · Rob Rose · Mingyan Fan · Hootan Nakhost · Tinglin Liu · Deeni Fatiha · Neil Satra · Juliet Rothenberg · Molly Carlin · Satish Tallapaka · Sims Witherspoon · David Parish · Peter Dolan · Chenyu Zhao -
2022 : Controlling Commercial Cooling Systems Using Reinforcement Learning »
Jerry Luo · Cosmin Paduraru · Octavian Voicu · Yuri Chervonyi · Scott Munns · Jerry Li · Crystal Qian · Praneet Dutta · Daniel Mankowitz · Jared Quincy Davis · Ningjia Wu · Xingwei Yang · Chu-Ming Chang · Ted Li · Rob Rose · Mingyan Fan · Hootan Nakhost · Tinglin Liu · Deeni Fatiha · Neil Satra · Juliet Rothenberg · Molly Carlin · Satish Tallapaka · Sims Witherspoon · David Parish · Peter Dolan · Chenyu Zhao -
2022 : Optimizing Industrial HVAC Systems with Hierarchical Reinforcement Learning »
William Wong · Praneet Dutta · Octavian Voicu · Yuri Chervonyi · Cosmin Paduraru · Jerry Luo -
2022 : Optimizing Industrial HVAC Systems with Hierarchical Reinforcement Learning »
William Wong · Praneet Dutta · Octavian Voicu · Yuri Chervonyi · Cosmin Paduraru · Jerry Luo -
2022 : Multi-step Planning for Automated Hyperparameter Optimization with OptFormer »
Lucio M Dery · Abram Friesen · Nando de Freitas · Marc'Aurelio Ranzato · Yutian Chen -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes »
Aviral Kumar · Rishabh Agarwal · XINYANG GENG · George Tucker · Sergey Levine -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Revisiting Bellman Errors for Offline Model Selection »
Joshua Zitovsky · Rishabh Agarwal · Daniel de Marchi · Michael Kosorok -
2022 : Revisiting Bellman Errors for Offline Model Selection »
Joshua Zitovsky · Daniel de Marchi · Rishabh Agarwal · Michael Kosorok -
2022 : Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks »
Jesse Farebrother · Joshua Greaves · Rishabh Agarwal · Charline Le Lan · Ross Goroshin · Pablo Samuel Castro · Marc Bellemare -
2022 : Investigating Multi-task Pretraining and Generalization in Reinforcement Learning »
Adrien Ali Taiga · Rishabh Agarwal · Jesse Farebrother · Aaron Courville · Marc Bellemare -
2023 Poster: Coherent Soft Imitation Learning »
Joe Watson · Sandy Huang · Nicolas Heess -
2023 Poster: The Surprising Effectiveness of Diffusion Models for Optical Flow and Monocular Depth Estimation »
Saurabh Saxena · Charles Herrmann · Junhwa Hur · Abhishek Kar · Mohammad Norouzi · Deqing Sun · David Fleet -
2023 Poster: Imagine the Unseen World: A Systematic Visual Imagination Benchmark »
Yeongbin Kim · Gautam Singh · Junyeong Park · Caglar Gulcehre · Sungjin Ahn -
2023 Poster: DriveMax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous Driving Research »
Cole Gulino · Justin Fu · Wenjie Luo · George Tucker · Eli Bronstein · Yiren Lu · Jean Harb · Xinlei Pan · Yan Wang · Xiangyu Chen · John Co-Reyes · Rishabh Agarwal · Rebecca Roelofs · Yao Lu · Nico Montali · Paul Mougin · Zoey Yang · Brandyn White · Aleksandra Faust · Rowan McAllister · Dragomir Anguelov · Benjamin Sapp -
2023 Oral: The Surprising Effectiveness of Diffusion Models for Optical Flow and Monocular Depth Estimation »
Saurabh Saxena · Charles Herrmann · Junhwa Hur · Abhishek Kar · Mohammad Norouzi · Deqing Sun · David Fleet -
2022 : Offline Q-learning on Diverse Multi-Task Data Both Scales And Generalizes »
Aviral Kumar · Rishabh Agarwal · XINYANG GENG · George Tucker · Sergey Levine -
2022 : Imagenary Patterns with Diffusion Models »
Mohammad Norouzi -
2022 : Democratizing RL Research by Reusing Prior Computation »
Rishabh Agarwal -
2022 : Invited Talk: Mohammad Norouzi »
Mohammad Norouzi -
2022 : Interactive Industrial Panel »
Jiahao Sun · Ahmed Ibrahim · Marjan Ghazvininejad · Yu Cheng · Boxing Chen · Mohammad Norouzi · Rahul Gupta -
2022 Workshop: 3rd Offline Reinforcement Learning Workshop: Offline RL as a "Launchpad" »
Aviral Kumar · Rishabh Agarwal · Aravind Rajeswaran · Wenxuan Zhou · George Tucker · Doina Precup · Aviral Kumar -
2022 Poster: Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2022 Poster: Video Diffusion Models »
Jonathan Ho · Tim Salimans · Alexey Gritsenko · William Chan · Mohammad Norouzi · David Fleet -
2022 Poster: Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding »
Chitwan Saharia · William Chan · Saurabh Saxena · Lala Li · Jay Whang · Remi Denton · Kamyar Ghasemipour · Raphael Gontijo Lopes · Burcu Karagol Ayan · Tim Salimans · Jonathan Ho · David Fleet · Mohammad Norouzi -
2022 Poster: Towards Learning Universal Hyperparameter Optimizers with Transformers »
Yutian Chen · Xingyou Song · Chansoo Lee · Zi Wang · Richard Zhang · David Dohan · Kazuya Kawakami · Greg Kochanski · Arnaud Doucet · Marc'Aurelio Ranzato · Sagi Perel · Nando de Freitas -
2022 Poster: Data augmentation for efficient learning from parametric experts »
Alexandre Galashov · Josh Merel · Nicolas Heess -
2021 : Retrospective Panel »
Sergey Levine · Nando de Freitas · Emma Brunskill · Finale Doshi-Velez · Nan Jiang · Rishabh Agarwal -
2021 : Speaker Intro »
Rishabh Agarwal · Aviral Kumar -
2021 : Speaker Intro »
Rishabh Agarwal · Aviral Kumar -
2021 Workshop: Offline Reinforcement Learning »
Rishabh Agarwal · Aviral Kumar · George Tucker · Justin Fu · Nan Jiang · Doina Precup · Aviral Kumar -
2021 : Opening Remarks »
Rishabh Agarwal · Aviral Kumar -
2021 : Behavior Predictive Representations for Generalization in Reinforcement Learning »
Siddhant Agarwal · Aaron Courville · Rishabh Agarwal -
2021 : NLP with Synthetic Text »
Mohammad Norouzi -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization Q&A »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 : DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Tengyu Ma · Aaron Courville · George Tucker · Sergey Levine -
2021 Test Of Time: Online Learning for Latent Dirichlet Allocation »
Matthew Hoffman · Francis Bach · David Blei -
2021 Poster: Why Do Better Loss Functions Lead to Less Transferable Features? »
Simon Kornblith · Ting Chen · Honglak Lee · Mohammad Norouzi -
2021 Poster: Entropic Desired Dynamics for Intrinsic Control »
Steven Hansen · Guillaume Desjardins · Kate Baumli · David Warde-Farley · Nicolas Heess · Simon Osindero · Volodymyr Mnih -
2021 Oral: Deep Reinforcement Learning at the Edge of the Statistical Precipice »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 Poster: Neural Production Systems »
Anirudh Goyal · Aniket Didolkar · Nan Rosemary Ke · Charles Blundell · Philippe Beaudoin · Nicolas Heess · Michael Mozer · Yoshua Bengio -
2021 Poster: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 Poster: Deep Reinforcement Learning at the Edge of the Statistical Precipice »
Rishabh Agarwal · Max Schwarzer · Pablo Samuel Castro · Aaron Courville · Marc Bellemare -
2021 Poster: Active Offline Policy Selection »
Ksenia Konyushova · Yutian Chen · Thomas Paine · Caglar Gulcehre · Cosmin Paduraru · Daniel Mankowitz · Misha Denil · Nando de Freitas -
2020 : Contributed Talk #3: Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning »
Rishabh Agarwal · Marlos C. Machado · Pablo Samuel Castro · Marc Bellemare -
2020 : Mini-panel discussion 2 - Real World RL: An industry perspective »
Franziska Meier · Gabriel Dulac-Arnold · Shie Mannor · Timothy A Mann -
2020 : Panel »
Emma Brunskill · Nan Jiang · Nando de Freitas · Finale Doshi-Velez · Sergey Levine · John Langford · Lihong Li · George Tucker · Rishabh Agarwal · Aviral Kumar -
2020 : Mini-panel discussion 1 - Bridging the gap between theory and practice »
Aviv Tamar · Emma Brunskill · Jost Tobias Springenberg · Omer Gottesman · Daniel Mankowitz -
2020 Workshop: Offline Reinforcement Learning »
Aviral Kumar · Rishabh Agarwal · George Tucker · Lihong Li · Doina Precup · Aviral Kumar -
2020 : Offline RL »
Nando de Freitas -
2020 : Introduction »
Aviral Kumar · George Tucker · Rishabh Agarwal -
2020 Workshop: The Challenges of Real World Reinforcement Learning »
Daniel Mankowitz · Gabriel Dulac-Arnold · Shie Mannor · Omer Gottesman · Anusha Nagabandi · Doina Precup · Timothy A Mann · Gabriel Dulac-Arnold -
2020 : Introduction and Overview »
Daniel Mankowitz · Gabriel Dulac-Arnold -
2020 Poster: Memory Based Trajectory-conditioned Policies for Learning from Sparse Rewards »
Yijie Guo · Jongwook Choi · Marcin Moczulski · Shengyu Feng · Samy Bengio · Mohammad Norouzi · Honglak Lee -
2020 Poster: Value-driven Hindsight Modelling »
Arthur Guez · Fabio Viola · Theophane Weber · Lars Buesing · Steven Kapturowski · Doina Precup · David Silver · Nicolas Heess -
2020 Poster: Critic Regularized Regression »
Ziyu Wang · Alexander Novikov · Konrad Zolna · Josh Merel · Jost Tobias Springenberg · Scott Reed · Bobak Shahriari · Noah Siegel · Caglar Gulcehre · Nicolas Heess · Nando de Freitas -
2020 Poster: Modular Meta-Learning with Shrinkage »
Yutian Chen · Abram Friesen · Feryal Behbahani · Arnaud Doucet · David Budden · Matthew Hoffman · Nando de Freitas -
2020 Spotlight: Modular Meta-Learning with Shrinkage »
Yutian Chen · Abram Friesen · Feryal Behbahani · Arnaud Doucet · David Budden · Matthew Hoffman · Nando de Freitas -
2020 Poster: Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation »
Sajad Norouzi · David Fleet · Mohammad Norouzi -
2020 Poster: Big Self-Supervised Models are Strong Semi-Supervised Learners »
Ting Chen · Simon Kornblith · Kevin Swersky · Mohammad Norouzi · Geoffrey E Hinton -
2020 : Policy Panel »
Roya Pakzad · Dia Kayyali · Marzyeh Ghassemi · Shakir Mohamed · Mohammad Norouzi · Ted Pedersen · Anver Emon · Abubakar Abid · Darren Byler · Samhaa R. El-Beltagy · Nayel Shafei · Mona Diab -
2020 Poster: Direct Policy Gradients: Direct Optimization of Policies in Discrete Action Spaces »
Guy Lorberbom · Chris Maddison · Nicolas Heess · Tamir Hazan · Danny Tarlow -
2020 Affinity Workshop: Muslims in ML »
Marzyeh Ghassemi · Mohammad Norouzi · Shakir Mohamed · Aya Salama · Tasmie Sarker -
2019 : Poster Session »
Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn -
2019 : Contributed Talks »
Rishabh Agarwal · Adam Gleave · Kimin Lee -
2019 Workshop: Science meets Engineering of Deep Learning »
Levent Sagun · Caglar Gulcehre · Adriana Romero Soriano · Negar Rostamzadeh · Nando de Freitas -
2019 : Welcoming remarks and introduction »
Levent Sagun · Caglar Gulcehre · Adriana Romero Soriano · Negar Rostamzadeh · Nando de Freitas -
2019 : Poster Session »
Ahana Ghosh · Javad Shafiee · Akhilan Boopathy · Alex Tamkin · Theodoros Vasiloudis · Vedant Nanda · Ali Baheri · Paul Fieguth · Andrew Bennett · Guanya Shi · Hao Liu · Arushi Jain · Jacob Tyo · Benjie Wang · Boxiao Chen · Carroll Wainwright · Chandramouli Shama Sastry · Chao Tang · Daniel S. Brown · David Inouye · David Venuto · Dhruv Ramani · Dimitrios Diochnos · Divyam Madaan · Dmitrii Krashenikov · Joel Oren · Doyup Lee · Eleanor Quint · elmira amirloo · Matteo Pirotta · Gavin Hartnett · Geoffroy Dubourg-Felonneau · Gokul Swamy · Pin-Yu Chen · Ilija Bogunovic · Jason Carter · Javier Garcia-Barcos · Jeet Mohapatra · Jesse Zhang · Jian Qian · John Martin · Oliver Richter · Federico Zaiter · Tsui-Wei Weng · Karthik Abinav Sankararaman · Kyriakos Polymenakos · Lan Hoang · mahdieh abbasi · Marco Gallieri · Mathieu Seurin · Matteo Papini · Matteo Turchetta · Matthew Sotoudeh · Mehrdad Hosseinzadeh · Nathan Fulton · Masatoshi Uehara · Niranjani Prasad · Oana-Maria Camburu · Patrik Kolaric · Philipp Renz · Prateek Jaiswal · Reazul Hasan Russel · Riashat Islam · Rishabh Agarwal · Alexander Aldrick · Sachin Vernekar · Sahin Lale · Sai Kiran Narayanaswami · Samuel Daulton · Sanjam Garg · Sebastian East · Shun Zhang · Soheil Dsidbari · Justin Goodwin · Victoria Krakovna · Wenhao Luo · Wesley Chung · Yuanyuan Shi · Yuh-Shyang Wang · Hongwei Jin · Ziping Xu -
2019 Poster: Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse »
James Lucas · George Tucker · Roger Grosse · Mohammad Norouzi -
2019 Poster: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2019 Poster: Learning Compositional Neural Programs with Recursive Tree Search and Planning »
Thomas PIERROT · Guillaume Ligner · Scott Reed · Olivier Sigaud · Nicolas Perrin · Alexandre Laterre · David Kas · Karim Beguir · Nando de Freitas -
2019 Spotlight: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2019 Spotlight: Learning Compositional Neural Programs with Recursive Tree Search and Planning »
Thomas PIERROT · Guillaume Ligner · Scott Reed · Olivier Sigaud · Nicolas Perrin · Alexandre Laterre · David Kas · Karim Beguir · Nando de Freitas -
2018 : Discussion Panel: Ryan Adams, Nicolas Heess, Leslie Kaelbling, Shie Mannor, Emo Todorov (moderator: Roy Fox) »
Ryan Adams · Nicolas Heess · Leslie Kaelbling · Shie Mannor · Emo Todorov · Roy Fox -
2018 : Probabilistic Reasoning for Reinforcement Learning (Nicolas Heess) »
Nicolas Heess -
2018 : TBA 5 »
Nando de Freitas -
2018 : Invited Talk 5: Nando de Freitas »
Nando de Freitas -
2018 : Poster Session 1 + Coffee »
Tom Van de Wiele · Rui Zhao · J. Fernando Hernandez-Garcia · Fabio Pardo · Xian Yeow Lee · Xiaolin Andy Li · Marcin Andrychowicz · Jie Tang · Suraj Nair · Juhyeon Lee · Cédric Colas · S. M. Ali Eslami · Yen-Chen Wu · Stephen McAleer · Ryan Julian · Yang Xue · Matthia Sabatelli · Pranav Shyam · Alexandros Kalousis · Giovanni Montana · Emanuele Pesce · Felix Leibfried · Zhanpeng He · Chunxiao Liu · Yanjun Li · Yoshihide Sawada · Alexander Pashevich · Tejas Kulkarni · Keiran Paster · Luca Rigazio · Quan Vuong · Hyunggon Park · Minhae Kwon · Rivindu Weerasekera · Shamane Siriwardhanaa · Rui Wang · Ozsel Kilinc · Keith Ross · Yizhou Wang · Simon Schmitt · Thomas Anthony · Evan Cater · Forest Agostinelli · Tegg Sung · Shirou Maruyama · Alexander Shmakov · Devin Schwab · Mohammad Firouzi · Glen Berseth · Denis Osipychev · Jesse Farebrother · Jianlan Luo · William Agnew · Peter Vrancx · Jonathan Heek · Catalin Ionescu · Haiyan Yin · Megumi Miyashita · Nathan Jay · Noga H. Rotman · Sam Leroux · Shaileshh Bojja Venkatakrishnan · Henri Schmidt · Jack Terwilliger · Ishan Durugkar · Jonathan Sauder · David Kas · Arash Tavakoli · Alain-Sam Cohen · Philip Bontrager · Adam Lerer · Thomas Paine · Ahmed Khalifa · Ruben Rodriguez · Avi Singh · Yiming Zhang -
2018 Poster: Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning »
Supasorn Suwajanakorn · Noah Snavely · Jonathan Tompson · Mohammad Norouzi -
2018 Oral: Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning »
Supasorn Suwajanakorn · Noah Snavely · Jonathan Tompson · Mohammad Norouzi -
2018 Poster: Playing hard exploration games by watching YouTube »
Yusuf Aytar · Tobias Pfaff · David Budden · Thomas Paine · Ziyu Wang · Nando de Freitas -
2018 Poster: Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing »
Chen Liang · Mohammad Norouzi · Jonathan Berant · Quoc V Le · Ni Lao -
2018 Spotlight: Playing hard exploration games by watching YouTube »
Yusuf Aytar · Tobias Pfaff · David Budden · Thomas Paine · Ziyu Wang · Nando de Freitas -
2018 Spotlight: Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing »
Chen Liang · Mohammad Norouzi · Jonathan Berant · Quoc V Le · Ni Lao -
2017 Poster: Bridging the Gap Between Value and Policy Based Reinforcement Learning »
Ofir Nachum · Mohammad Norouzi · Kelvin Xu · Dale Schuurmans -
2017 Poster: Distral: Robust multitask reinforcement learning »
Yee Teh · Victor Bapst · Wojciech Czarnecki · John Quan · James Kirkpatrick · Raia Hadsell · Nicolas Heess · Razvan Pascanu -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2017 Poster: Robust Imitation of Diverse Behaviors »
Ziyu Wang · Josh Merel · Scott Reed · Nando de Freitas · Gregory Wayne · Nicolas Heess -
2017 Poster: Plan, Attend, Generate: Planning for Sequence-to-Sequence Models »
Caglar Gulcehre · Francis Dutil · Adam Trischler · Yoshua Bengio -
2017 Poster: Learning Hierarchical Information Flow with Recurrent Neural Modules »
Danijar Hafner · Alexander Irpan · James Davidson · Nicolas Heess -
2017 Tutorial: Deep Learning: Practice and Trends »
Nando de Freitas · Scott Reed · Oriol Vinyals -
2016 Workshop: Neural Abstract Machines & Program Induction »
Matko Bošnjak · Nando de Freitas · Tejas Kulkarni · Arvind Neelakantan · Scott E Reed · Sebastian Riedel · Tim Rocktäschel -
2016 : Nando De Freitas »
Nando de Freitas -
2016 : Learning To Optimize »
Nando de Freitas -
2016 Poster: Unsupervised Learning of 3D Structure from Images »
Danilo Jimenez Rezende · S. M. Ali Eslami · Shakir Mohamed · Peter Battaglia · Max Jaderberg · Nicolas Heess -
2016 Poster: Attend, Infer, Repeat: Fast Scene Understanding with Generative Models »
S. M. Ali Eslami · Nicolas Heess · Theophane Weber · Yuval Tassa · David Szepesvari · koray kavukcuoglu · Geoffrey E Hinton -
2016 Poster: Learning to learn by gradient descent by gradient descent »
Marcin Andrychowicz · Misha Denil · Sergio Gómez · Matthew Hoffman · David Pfau · Tom Schaul · Nando de Freitas -
2016 Poster: Reward Augmented Maximum Likelihood for Neural Structured Prediction »
Mohammad Norouzi · Samy Bengio · zhifeng Chen · Navdeep Jaitly · Mike Schuster · Yonghui Wu · Dale Schuurmans -
2015 : Information based methods for Black-box Optimization »
Matthew Hoffman -
2015 Workshop: Bayesian Optimization: Scalability and Flexibility »
Bobak Shahriari · Ryan Adams · Nando de Freitas · Amar Shah · Roberto Calandra -
2015 Poster: Efficient Non-greedy Optimization of Decision Trees »
Mohammad Norouzi · Maxwell Collins · Matthew A Johnson · David Fleet · Pushmeet Kohli -
2015 Poster: Gradient Estimation Using Stochastic Computation Graphs »
John Schulman · Nicolas Heess · Theophane Weber · Pieter Abbeel -
2015 Poster: Learning Continuous Control Policies by Stochastic Value Gradients »
Nicolas Heess · Gregory Wayne · David Silver · Timothy Lillicrap · Tom Erez · Yuval Tassa -
2014 Workshop: Bayesian Optimization in Academia and Industry »
Zoubin Ghahramani · Ryan Adams · Matthew Hoffman · Kevin Swersky · Jasper Snoek -
2014 Poster: Recurrent Models of Visual Attention »
Volodymyr Mnih · Nicolas Heess · Alex Graves · koray kavukcuoglu -
2014 Spotlight: Recurrent Models of Visual Attention »
Volodymyr Mnih · Nicolas Heess · Alex Graves · koray kavukcuoglu -
2014 Poster: Predictive Entropy Search for Efficient Global Optimization of Black-box Functions »
José Miguel Hernández-Lobato · Matthew Hoffman · Zoubin Ghahramani -
2014 Spotlight: Predictive Entropy Search for Efficient Global Optimization of Black-box Functions »
José Miguel Hernández-Lobato · Matthew Hoffman · Zoubin Ghahramani -
2013 Workshop: Bayesian Optimization in Theory and Practice »
Matthew Hoffman · Jasper Snoek · Nando de Freitas · Michael A Osborne · Ryan Adams · Sebastien Bubeck · Philipp Hennig · Remi Munos · Andreas Krause -
2012 Poster: Hamming Distance Metric Learning »
Mohammad Norouzi · Russ Salakhutdinov · David Fleet -
2007 Spotlight: Bayesian Policy Learning with Trans-Dimensional MCMC »
Matthew Hoffman · Arnaud Doucet · Nando de Freitas · Ajay Jasra -
2007 Poster: Bayesian Policy Learning with Trans-Dimensional MCMC »
Matthew Hoffman · Arnaud Doucet · Nando de Freitas · Ajay Jasra