Timezone: »
Many dynamic processes, including common scenarios in robotic control and reinforcement learning (RL), involve a set of interacting subprocesses. Though the subprocesses are not independent, their interactions are often sparse, and the dynamics at any given time step can often be decomposed into locally independent} causal mechanisms. Such local causal structures can be leveraged to improve the sample efficiency of sequence prediction and off-policy reinforcement learning. We formalize this by introducing local causal models (LCMs), which are induced from a global causal model by conditioning on a subset of the state space. We propose an approach to inferring these structures given an object-oriented state representation, as well as a novel algorithm for Counterfactual Data Augmentation (CoDA). CoDA uses local structures and an experience replay to generate counterfactual experiences that are causally valid in the global model. We find that CoDA significantly improves the performance of RL agents in locally factored tasks, including the batch-constrained and goal-conditioned settings. Code available at https://github.com/spitis/mrl.
Author Information
Silviu Pitis (University of Toronto)
Elliot Creager (University of Toronto)
Animesh Garg (University of Toronto, Nvidia, Vector Institute)
I am a CIFAR AI Chair Assistant Professor of Computer Science at the University of Toronto, a Faculty Member at the Vector Institute, and Sr. Researcher at Nvidia. My current research focuses on machine learning for perception and control in robotics.
More from the Same Authors
-
2021 : Tutorial: Safe Learning for Decision Making »
Angela Schoellig · SiQi Zhou · Lukas Brunke · Animesh Garg · Melissa Greeff · Somil Bansal -
2021 : Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World Trifinger »
Arthur Allshire · Mayank Mittal · Varun Lodaya · Viktor Makoviychuk · Denys Makoviichuk · Felix Widmaier · Manuel Wuethrich · Stefan Bauer · Ankur Handa · Animesh Garg -
2021 : Learning Discrete Neural Reaction Class to Improve Retrosynthesis Prediction »
Théophile Gaudin · Animesh Garg · Alan Aspuru-Guzik -
2021 : Reinforcement Learning in Factored Action Spaces using Tensor Decompositions »
Anuj Mahajan · Mikayel Samvelyan · Lei Mao · Viktor Makoviichuk · Animesh Garg · Jean Kossaifi · Shimon Whiteson · Yuke Zhu · Anima Anandkumar -
2022 : ProgPrompt: Generating Situated Robot Task Plans using Large Language Models »
Ishika Singh · Valts Blukis · Arsalan Mousavian · Ankit Goyal · Danfei Xu · Jonathan Tremblay · Dieter Fox · Jesse Thomason · Animesh Garg -
2022 : Learning Successor Feature Representations to Train Robust Policies for Multi-task Learning »
Melissa Mozifian · Dieter Fox · David Meger · Fabio Ramos · Animesh Garg -
2022 : Steering Large Language Models using APE »
Yongchao Zhou · Andrei Muresanu · Ziwen Han · Keiran Paster · Silviu Pitis · Harris Chan · Jimmy Ba -
2022 : Rational Multi-Objective Agents Must Admit Non-Markov Reward Representations »
Silviu Pitis · Duncan Bailey · Jimmy Ba -
2022 : Debate: Robotics for Good »
Karol Hausman · Katherine Driggs-Campbell · Luca Carlone · Sarah Dean · Matthew Johnson-Roberson · Animesh Garg -
2022 : Panel: Uncertainty-Aware Machine Learning for Robotics (Q&A 1) »
Georgia Chalvatzaki · Stefanie Tellex · Animesh Garg -
2022 Workshop: The Symbiosis of Deep Learning and Differential Equations II »
Michael Poli · Winnie Xu · Estefany Kelly Buchanan · Maryam Hosseini · Luca Celotti · Martin Magill · Ermal Rrapaj · Qiyao Wei · Stefano Massaroli · Patrick Kidger · Archis Joglekar · Animesh Garg · David Duvenaud -
2022 : Q & A »
Golnoosh Farnadi · Elliot Creager · Q.Vera Liao -
2022 : Tutorial part 2 »
Elliot Creager -
2022 Tutorial: Algorithmic fairness: at the intersections »
Golnoosh Farnadi · Q.Vera Liao · Elliot Creager -
2022 : Welcome and introduction »
Elliot Creager -
2022 Poster: MoCoDA: Model-based Counterfactual Data Augmentation »
Silviu Pitis · Elliot Creager · Ajay Mandlekar · Animesh Garg -
2021 : Panel B: Safe Learning and Decision Making in Uncertain and Unstructured Environments »
Yisong Yue · J. Zico Kolter · Ivan Dario D Jimenez Rodriguez · Dragos Margineantu · Animesh Garg · Melissa Greeff -
2021 : Reinforcement Learning in Factored Action Spaces using Tensor Decompositions »
Anuj Mahajan · Mikayel Samvelyan · Lei Mao · Viktor Makoviichuk · Animesh Garg · Jean Kossaifi · Shimon Whiteson · Yuke Zhu · Anima Anandkumar -
2021 : Theme B Introduction »
Animesh Garg -
2021 Workshop: Deployable Decision Making in Embodied Systems (DDM) »
Angela Schoellig · Animesh Garg · Somil Bansal · SiQi Zhou · Melissa Greeff · Lukas Brunke -
2021 Workshop: The Symbiosis of Deep Learning and Differential Equations »
Luca Celotti · Kelly Buchanan · Jorge Ortiz · Patrick Kidger · Stefano Massaroli · Michael Poli · Lily Hu · Ermal Rrapaj · Martin Magill · Thorsteinn Jonsson · Animesh Garg · Murtadha Aldeer -
2021 : Safe RL Debate »
Sylvia Herbert · Animesh Garg · Emma Brunskill · Aleksandra Faust · Dylan Hadfield-Menell -
2021 : Safe RL Panel Discussion »
Animesh Garg · Marek Petrik · Shie Mannor · Claire Tomlin · Ugo Rosolia · Dylan Hadfield-Menell -
2021 Poster: Drop-DTW: Aligning Common Signal Between Sequences While Dropping Outliers »
Mikita Dvornik · Isma Hadji · Konstantinos Derpanis · Animesh Garg · Allan Jepson -
2021 Poster: Neural Hybrid Automata: Learning Dynamics With Multiple Modes and Stochastic Transitions »
Michael Poli · Stefano Massaroli · Luca Scimeca · Sanghyuk Chun · Seong Joon Oh · Atsushi Yamashita · Hajime Asama · Jinkyoo Park · Animesh Garg -
2021 Poster: Dynamic Bottleneck for Robust Self-Supervised Exploration »
Chenjia Bai · Lingxiao Wang · Lei Han · Animesh Garg · Jianye Hao · Peng Liu · Zhaoran Wang -
2020 : Contributed talks 5: Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification »
Elliot Creager · David Madras · Richard Zemel -
2020 Workshop: Resistance AI Workshop »
Suzanne Kite · Mattie Tesfaldet · J Khadijah Abdurahman · William Agnew · Elliot Creager · Agata Foryciarz · Raphael Gontijo Lopes · Pratyusha Kalluri · Marie-Therese Png · Manuel Sabin · Maria Skoularidou · Ramon Vilarino · Rose Wang · Sayash Kapoor · Micah Carroll -
2020 Poster: Causal Discovery in Physical Systems from Videos »
Yunzhu Li · Antonio Torralba · Anima Anandkumar · Dieter Fox · Animesh Garg -
2020 Poster: Curriculum By Smoothing »
Samarth Sinha · Animesh Garg · Hugo Larochelle -
2020 Spotlight: Curriculum By Smoothing »
Samarth Sinha · Animesh Garg · Hugo Larochelle -
2020 Session: Orals & Spotlights Track 06: Dynamical Sys/Density/Sparsity »
Animesh Garg · Rose Yu -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2018 : Poster Session »
Sujay Sanghavi · Vatsal Shah · Yanyao Shen · Tianchen Zhao · Yuandong Tian · Tomer Galanti · Mufan Li · Gilad Cohen · Daniel Rothchild · Aristide Baratin · Devansh Arpit · Vagelis Papalexakis · Michael Perlmutter · Ashok Vardhan Makkuva · Pim de Haan · Yingyan Lin · Wanmo Kang · Cheolhyoung Lee · Hao Shen · Sho Yaida · Dan Roberts · Nadav Cohen · Philippe Casgrain · Dejiao Zhang · Tengyu Ma · Avinash Ravichandran · Julian Emilio Salazar · Bo Li · Davis Liang · Christopher Wong · Glen Bigan Mbeng · Animesh Garg