Timezone: »
We develop an approach for estimating models described via conditional moment restrictions, with a prototypical application being non-parametric instrumental variable regression. We introduce a min-max criterion function, under which the estimation problem can be thought of as solving a zero-sum game between a modeler who is optimizing over the hypothesis space of the target model and an adversary who identifies violating moments over a test function space. We analyze the statistical estimation rate of the resulting estimator for arbitrary hypothesis spaces, with respect to an appropriate analogue of the mean squared error metric, for ill-posed inverse problems. We show that when the minimax criterion is regularized with a second moment penalty on the test function and the test function space is sufficiently rich, then the estimation rate scales with the critical radius of the hypothesis and test function spaces, a quantity which typically gives tight fast rates. Our main result follows from a novel localized Rademacher analysis of statistical learning problems defined via minimax objectives. We provide applications of our main results for several hypothesis spaces used in practice such as: reproducing kernel Hilbert spaces, high dimensional sparse linear functions, spaces defined via shape constraints, ensemble estimators such as random forests, and neural networks. For each of these applications we provide computationally efficient optimization methods for solving the corresponding minimax problem (e.g. stochastic first-order heuristics for neural networks). In several applications, we show how our modified mean squared error rate, combined with conditions that bound the ill-posedness of the inverse problem, lead to mean squared error rates. We conclude with an extensive experimental analysis of the proposed methods.
Author Information
Nishanth Dikkala (Google)
Greg Lewis (Microsoft Research)
Lester Mackey (Microsoft Research)
Vasilis Syrgkanis (Microsoft Research)
More from the Same Authors
-
2021 : Double/Debiased Machine Learning for Dynamic Treatment Effects via $g$-Estimation »
Greg Lewis · Vasilis Syrgkanis -
2021 : Estimating the Long-Term Effects of Novel Treatments »
Keith Battocchi · Maggie Hei · Greg Lewis · Miruna Oprescu · Vasilis Syrgkanis -
2021 : Bounding Wasserstein distance with couplings »
Niloy Biswas · Lester Mackey -
2021 : Learned Benchmarks for Subseasonal Forecasting »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Miruna Oprescu · Judah Cohen · Franklyn Wang · Sean Knight · Maria Geogdzhayeva · Sam Levang · Ernest Fraenkel · Lester Mackey -
2022 : A Finite-Particle Convergence Rate for Stein Variational Gradient Descent »
Jiaxin Shi · Lester Mackey -
2022 : Adaptive Bias Correction for Improved Subseasonal Forecast »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Judah Cohen · Miruna Oprescu · Ernest Fraenkel · Lester Mackey -
2022 : Adaptive Bias Correction for Improved Subseasonal Forecast »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Judah Cohen · Miruna Oprescu · Ernest Fraenkel · Lester Mackey -
2022 : Targeted Separation and Convergence with Kernel Discrepancies »
Alessandro Barp · Carl-Johann Simon-Gabriel · Mark Girolami · Lester Mackey -
2023 Poster: Learning Rate Free Bayesian Inference in Constrained Domains »
Louis Sharrock · Lester Mackey · Christopher Nemeth -
2023 Poster: Should I Stop or Should I Go: Early Stopping with Heterogeneous Populations »
Hammaad Adam · Fan Yin · Huibin Hu · Neil Tenenholtz · Lorin Crawford · Lester Mackey · Allison Koenecke -
2023 Poster: A Finite-Particle Convergence Rate for Stein Variational Gradient Descent »
Jiaxin Shi · Lester Mackey -
2023 Poster: SubseasonalClimateUSA: A Dataset for Subseasonal Forecasting and Benchmarking »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Miruna Oprescu · Judah Cohen · Franklyn Wang · Sean Knight · Maria Geogdzhayeva · Sam Levang · Ernest Fraenkel · Lester Mackey -
2022 : Adaptive Bias Correction for Improved Subseasonal Forecast »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Judah Cohen · Miruna Oprescu · Ernest Fraenkel · Lester Mackey -
2022 Spotlight: Lightning Talks 1B-4 »
Andrei Atanov · Shiqi Yang · Wanshan Li · Yongchang Hao · Ziquan Liu · Jiaxin Shi · Anton Plaksin · Jiaxiang Chen · Ziqi Pan · yaxing wang · Yuxin Liu · Stepan Martyanov · Alessandro Rinaldo · Yuhao Zhou · Li Niu · Qingyuan Yang · Andrei Filatov · Yi Xu · Liqing Zhang · Lili Mou · Ruomin Huang · Teresa Yeo · kai wang · Daren Wang · Jessica Hwang · Yuanhong Xu · Qi Qian · Hu Ding · Michalis Titsias · Shangling Jui · Ajay Sohmshetty · Lester Mackey · Joost van de Weijer · Hao Li · Amir Zamir · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 Spotlight: Gradient Estimation with Discrete Stein Operators »
Jiaxin Shi · Yuhao Zhou · Jessica Hwang · Michalis Titsias · Lester Mackey -
2022 Poster: Gradient Estimation with Discrete Stein Operators »
Jiaxin Shi · Yuhao Zhou · Jessica Hwang · Michalis Titsias · Lester Mackey -
2021 : Invited Talk 5 Q&A »
Lester Mackey -
2021 : Your Model is Wrong (but Might Still Be Useful) »
Lester Mackey -
2021 : Learned Benchmarks for Subseasonal Forecasting »
Soukayna Mouatadid · Paulo Orenstein · Genevieve Flaspohler · Miruna Oprescu · Judah Cohen · Franklyn Wang · Sean Knight · Maria Geogdzhayeva · Sam Levang · Ernest Fraenkel · Lester Mackey -
2021 Poster: Double/Debiased Machine Learning for Dynamic Treatment Effects »
Greg Lewis · Vasilis Syrgkanis -
2021 Poster: Asymptotics of the Bootstrap via Stability with Applications to Inference with Model Selection »
Morgane Austern · Vasilis Syrgkanis -
2021 Poster: Estimating the Long-Term Effects of Novel Treatments »
Keith Battocchi · Eleanor Dillon · Maggie Hei · Greg Lewis · Miruna Oprescu · Vasilis Syrgkanis -
2020 Poster: Stochastic Stein Discrepancies »
Jackson Gorham · Anant Raj · Lester Mackey -
2020 Poster: Cross-validation Confidence Intervals for Test Error »
Pierre Bayle · Alexandre Bayle · Lucas Janson · Lester Mackey -
2019 : Lester Mackey (Microsoft Research and Stanford) »
Lester Mackey -
2019 : Coffee break, posters, and 1-on-1 discussions »
Julius von Kügelgen · David Rohde · Candice Schumann · Grace Charles · Victor Veitch · Vira Semenova · Mert Demirer · Vasilis Syrgkanis · Suraj Nair · Aahlad Puli · Masatoshi Uehara · Aditya Gopalan · Yi Ding · Ignavier Ng · Khashayar Khosravi · Eli Sherman · Shuxi Zeng · Aleksander Wieczorek · Hao Liu · Kyra Gan · Jason Hartford · Miruna Oprescu · Alexander D'Amour · Jörn Boehnke · Yuta Saito · Théophile Griveau-Billion · Chirag Modi · Shyngys Karimov · Jeroen Berrevoets · Logan Graham · Imke Mayer · Dhanya Sridhar · Issa Dahabreh · Alan Mishler · Duncan Wadsworth · Khizar Qureshi · Rahul Ladhania · Gota Morishita · Paul Welle -
2019 : Climate Change: A Grand Challenge for ML »
Yoshua Bengio · Carla Gomes · Andrew Ng · Jeff Dean · Lester Mackey -
2019 Poster: Minimum Stein Discrepancy Estimators »
Alessandro Barp · Francois-Xavier Briol · Andrew Duncan · Mark Girolami · Lester Mackey -
2019 Poster: Accelerating Rescaled Gradient Descent: Fast Optimization of Smooth Functions »
Ashia Wilson · Lester Mackey · Andre Wibisono -
2019 Poster: Semi-Parametric Efficient Policy Learning with Continuous Actions »
Victor Chernozhukov · Mert Demirer · Greg Lewis · Vasilis Syrgkanis -
2019 Poster: Low-Rank Bandit Methods for High-Dimensional Dynamic Pricing »
Jonas Mueller · Vasilis Syrgkanis · Matt Taddy -
2019 Poster: Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond »
Xuechen (Chen) Li · Denny Wu · Lester Mackey · Murat Erdogdu -
2019 Spotlight: Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond »
Xuechen (Chen) Li · Denny Wu · Lester Mackey · Murat Erdogdu -
2019 Poster: Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments »
Vasilis Syrgkanis · Victor Lei · Miruna Oprescu · Maggie Hei · Keith Battocchi · Greg Lewis -
2019 Spotlight: Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments »
Vasilis Syrgkanis · Victor Lei · Miruna Oprescu · Maggie Hei · Keith Battocchi · Greg Lewis -
2018 Workshop: Smooth Games Optimization and Machine Learning »
Simon Lacoste-Julien · Ioannis Mitliagkas · Gauthier Gidel · Vasilis Syrgkanis · Eva Tardos · Leon Bottou · Sebastian Nowozin -
2018 Poster: Random Feature Stein Discrepancies »
Jonathan Huggins · Lester Mackey -
2018 Poster: HOGWILD!-Gibbs can be PanAccurate »
Constantinos Daskalakis · Nishanth Dikkala · Siddhartha Jayanti -
2018 Poster: Global Non-convex Optimization with Discretized Diffusions »
Murat Erdogdu · Lester Mackey · Ohad Shamir -
2017 Workshop: Learning in the Presence of Strategic Behavior »
Nika Haghtalab · Yishay Mansour · Tim Roughgarden · Vasilis Syrgkanis · Jennifer Wortman Vaughan -
2017 Poster: Welfare Guarantees from Data »
Darrell Hoy · Denis Nekipelov · Vasilis Syrgkanis -
2017 Poster: Robust Optimization for Non-Convex Objectives »
Robert S Chen · Brendan Lucier · Yaron Singer · Vasilis Syrgkanis -
2017 Poster: A Sample Complexity Measure with Applications to Learning Optimal Auctions »
Vasilis Syrgkanis -
2017 Oral: Robust Optimization for Non-Convex Objectives »
Robert S Chen · Brendan Lucier · Yaron Singer · Vasilis Syrgkanis -
2017 Poster: Concentration of Multilinear Functions of the Ising Model with Applications to Network Data »
Constantinos Daskalakis · Nishanth Dikkala · Gautam Kamath -
2016 Poster: Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits »
Vasilis Syrgkanis · Haipeng Luo · Akshay Krishnamurthy · Robert Schapire -
2015 Poster: No-Regret Learning in Bayesian Games »
Jason Hartline · Vasilis Syrgkanis · Eva Tardos -
2015 Poster: Measuring Sample Quality with Stein's Method »
Jackson Gorham · Lester Mackey -
2015 Poster: Fast Convergence of Regularized Learning in Games »
Vasilis Syrgkanis · Alekh Agarwal · Haipeng Luo · Robert Schapire -
2015 Spotlight: Measuring Sample Quality with Stein's Method »
Jackson Gorham · Lester Mackey -
2015 Oral: Fast Convergence of Regularized Learning in Games »
Vasilis Syrgkanis · Alekh Agarwal · Haipeng Luo · Robert Schapire -
2014 Workshop: High-energy particle physics, machine learning, and the HiggsML data challenge (HEPML) »
Glen Cowan · Balázs Kégl · Kyle Cranmer · Gábor Melis · Tim Salimans · Vladimir Vava Gligorov · Daniel Whiteson · Lester Mackey · Wojciech Kotlowski · Roberto Díaz Morales · Pierre Baldi · Cecile Germain · David Rousseau · Isabelle Guyon · Tianqi Chen