Timezone: »
Federated Learning (FL) is a machine learning setting where many devices collaboratively train a machine learning model while keeping the training data decentralized. In most of the current training schemes the central model is refined by averaging the parameters of the server model and the updated parameters from the client side. However, directly averaging model parameters is only possible if all models have the same structure and size, which could be a restrictive constraint in many scenarios.
In this work we investigate more powerful and more flexible aggregation schemes for FL. Specifically, we propose ensemble distillation for model fusion, i.e. training the central classifier through unlabeled data on the outputs of the models from the clients. This knowledge distillation technique mitigates privacy risk and cost to the same extent as the baseline FL algorithms, but allows flexible aggregation over heterogeneous client models that can differ e.g. in size, numerical precision or structure. We show in extensive empirical experiments on various CV/NLP datasets (CIFAR-10/100, ImageNet, AG News, SST2) and settings (heterogeneous models/data) that the server model can be trained much faster, requiring fewer communication rounds than any existing FL technique so far.
Author Information
Tao Lin (EPFL)
Lingjing Kong (EPFL)
Sebastian Stich (EPFL)
Dr. [Sebastian U. Stich](https://sstich.ch/) is a faculty at the CISPA Helmholtz Center for Information Security. Research interests: - *methods for machine learning and statistics*—at the interface of theory and practice - *collaborative learning* (distributed, federated and decentralized methods) - *optimization for machine learning* (adaptive stochastic methods and generalization performance)
Martin Jaggi (EPFL)
More from the Same Authors
-
2021 : Interpreting Language Models Through Knowledge Graph Extraction »
Vinitra Swamy · Angelika Romanou · Martin Jaggi -
2021 : Escaping Local Minima With Stochastic Noise »
Harshvardhan Harshvardhan · Sebastian Stich -
2021 : Understanding Memorization from the Perspective of Optimization via Efficient Influence Estimation »
Futong Liu · Tao Lin · Martin Jaggi -
2021 : Understanding Memorization from the Perspective of Optimization via Efficient Influence Estimation »
Futong Liu · Tao Lin · Martin Jaggi -
2021 : WAFFLE: Weighted Averaging for Personalized Federated Learning »
Martin Beaussart · Mary-Anne Hartley · Martin Jaggi -
2021 : The Peril of Popular Deep Learning Uncertainty Estimation Methods »
Yehao Liu · Matteo Pagliardini · Tatjana Chavdarova · Sebastian Stich -
2022 : Data-heterogeneity-aware Mixing for Decentralized Learning »
Yatin Dandi · Anastasiia Koloskova · Martin Jaggi · Sebastian Stich -
2022 : Decentralized Stochastic Optimization with Client Sampling »
Ziwei Liu · Anastasiia Koloskova · Martin Jaggi · Tao Lin -
2022 : Towards Provably Personalized Federated Learning via Threshold-Clustering of Similar Clients »
Mariel A Werner · Lie He · Sai Praneeth Karimireddy · Michael Jordan · Martin Jaggi -
2022 : Diversity through Disagreement for Better Transferability »
Matteo Pagliardini · Martin Jaggi · François Fleuret · Sai Praneeth Karimireddy -
2022 : Scalable Collaborative Learning via Representation Sharing »
Frédéric Berdoz · Abhishek Singh · Martin Jaggi · Ramesh Raskar -
2022 Poster: Sharper Convergence Guarantees for Asynchronous SGD for Distributed and Federated Learning »
Anastasiia Koloskova · Sebastian Stich · Martin Jaggi -
2022 Poster: FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings »
Jean Ogier du Terrail · Samy-Safwan Ayed · Edwige Cyffers · Felix Grimberg · Chaoyang He · Regis Loeb · Paul Mangold · Tanguy Marchand · Othmane Marfoq · Erum Mushtaq · Boris Muzellec · Constantin Philippenko · Santiago Silva · Maria Teleńczuk · Shadi Albarqouni · Salman Avestimehr · Aurélien Bellet · Aymeric Dieuleveut · Martin Jaggi · Sai Praneeth Karimireddy · Marco Lorenzi · Giovanni Neglia · Marc Tommasi · Mathieu Andreux -
2022 Poster: Beyond spectral gap: the role of the topology in decentralized learning »
Thijs Vogels · Hadrien Hendrikx · Martin Jaggi -
2021 : [S11] Interpreting Language Models Through Knowledge Graph Extraction »
Vinitra Swamy · Angelika Romanou · Martin Jaggi -
2021 : Contributed Talks in Session 1 (Zoom) »
Sebastian Stich · Futong Liu · Abdurakhmon Sadiev · Frederik Benzing · Simon Roburin -
2021 : Q&A with Martin Jaggi »
Martin Jaggi -
2021 : Learning with Strange Gradients, Martin Jaggi »
Martin Jaggi -
2021 : Opening Remarks to Session 1 »
Sebastian Stich -
2021 Workshop: OPT 2021: Optimization for Machine Learning »
Courtney Paquette · Quanquan Gu · Oliver Hinder · Katya Scheinberg · Sebastian Stich · Martin Takac -
2021 Poster: Breaking the centralized barrier for cross-device federated learning »
Sai Praneeth Karimireddy · Martin Jaggi · Satyen Kale · Mehryar Mohri · Sashank Reddi · Sebastian Stich · Ananda Theertha Suresh -
2021 Poster: RelaySum for Decentralized Deep Learning on Heterogeneous Data »
Thijs Vogels · Lie He · Anastasiia Koloskova · Sai Praneeth Karimireddy · Tao Lin · Sebastian Stich · Martin Jaggi -
2021 Poster: An Improved Analysis of Gradient Tracking for Decentralized Machine Learning »
Anastasiia Koloskova · Tao Lin · Sebastian Stich -
2020 : Closing remarks »
Quanquan Gu · Courtney Paquette · Mark Schmidt · Sebastian Stich · Martin Takac -
2020 : Contributed talks in Session 1 (Zoom) »
Sebastian Stich · Laurent Condat · Zhize Li · Ohad Shamir · Tiffany Vlaar · Mohammadi Zaki -
2020 : Live Q&A with Volkan Cevher (Zoom) »
Sebastian Stich -
2020 : Live Q&A with Tong Zhang (Zoom) »
Sebastian Stich -
2020 : Welcome remarks to Session 1 »
Sebastian Stich -
2020 Workshop: OPT2020: Optimization for Machine Learning »
Courtney Paquette · Mark Schmidt · Sebastian Stich · Quanquan Gu · Martin Takac -
2020 : Welcome event (gather.town) »
Quanquan Gu · Courtney Paquette · Mark Schmidt · Sebastian Stich · Martin Takac -
2020 Poster: Practical Low-Rank Communication Compression in Decentralized Deep Learning »
Thijs Vogels · Sai Praneeth Karimireddy · Martin Jaggi -
2020 Poster: On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them »
Chen Liu · Mathieu Salzmann · Tao Lin · Ryota Tomioka · Sabine Süsstrunk -
2020 Poster: Model Fusion via Optimal Transport »
Sidak Pal Singh · Martin Jaggi -
2019 Poster: PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization »
Thijs Vogels · Sai Praneeth Karimireddy · Martin Jaggi -
2019 Poster: Unsupervised Scalable Representation Learning for Multivariate Time Series »
Jean-Yves Franceschi · Aymeric Dieuleveut · Martin Jaggi -
2018 Poster: Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization »
Robert Gower · Filip Hanzely · Peter Richtarik · Sebastian Stich -
2018 Poster: COLA: Decentralized Linear Learning »
Lie He · Yatao Bian · Martin Jaggi -
2018 Poster: Sparsified SGD with Memory »
Sebastian Stich · Jean-Baptiste Cordonnier · Martin Jaggi -
2018 Poster: Training DNNs with Hybrid Block Floating Point »
Mario Drumond · Tao Lin · Martin Jaggi · Babak Falsafi -
2017 Poster: Safe Adaptive Importance Sampling »
Sebastian Stich · Anant Raj · Martin Jaggi -
2017 Spotlight: Safe Adaptive Importance Sampling »
Sebastian Stich · Anant Raj · Martin Jaggi -
2017 Poster: Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees »
Francesco Locatello · Michael Tschannen · Gunnar Ratsch · Martin Jaggi -
2017 Poster: Efficient Use of Limited-Memory Accelerators for Linear Learning on Heterogeneous Systems »
Celestine Dünner · Thomas Parnell · Martin Jaggi -
2015 Poster: On the Global Linear Convergence of Frank-Wolfe Optimization Variants »
Simon Lacoste-Julien · Martin Jaggi -
2014 Workshop: OPT2014: Optimization for Machine Learning »
Zaid Harchaoui · Suvrit Sra · Alekh Agarwal · Martin Jaggi · Miro Dudik · Aaditya Ramdas · Jean Lasserre · Yoshua Bengio · Amir Beck -
2014 Poster: Communication-Efficient Distributed Dual Coordinate Ascent »
Martin Jaggi · Virginia Smith · Martin Takac · Jonathan Terhorst · Sanjay Krishnan · Thomas Hofmann · Michael Jordan -
2013 Workshop: Greedy Algorithms, Frank-Wolfe and Friends - A modern perspective »
Martin Jaggi · Zaid Harchaoui · Federico Pierucci