Timezone: »
This paper introduces Deep Statistical Solvers (DSS), a new class of trainable solvers for optimization problems, arising e.g., from system simulations. The key idea is to learn a solver that generalizes to a given distribution of problem instances. This is achieved by directly using as loss the objective function of the problem, as opposed to most previous Machine Learning based approaches, which mimic the solutions attained by an existing solver. Though both types of approaches outperform classical solvers with respect to speed for a given accuracy, a distinctive advantage of DSS is that they can be trained without a training set of sample solutions. Focusing on use cases of systems of interacting and interchangeable entities (e.g. molecular dynamics, power systems, discretized PDEs), the proposed approach is instantiated within a class of Graph Neural Networks. Under sufficient conditions, we prove that the corresponding set of functions contains approximations to any arbitrary precision of the actual solution of the optimization problem. The proposed approach is experimentally validated on large linear problems, demonstrating super-generalisation properties; And on AC power grid simulations, on which the predictions of the trained model have a correlation higher than 99.99% with the outputs of the classical Newton-Raphson method (known for its accuracy), while being 2 to 3 orders of magnitude faster.
Author Information
Balthazar Donon (RTE R&D / Université Paris-Saclay)
Zhengying Liu (Inria/U. Paris-Saclay)
Wenzhuo LIU (Inria Paris Saclay)
Isabelle Guyon (U. Paris-Saclay & ChaLearn)
Antoine Marot (RTE)
Marc Schoenauer (INRIA / U. Paris-Saclay)
More from the Same Authors
-
2021 : Interpretable Machine Learning with Symbolic Regression »
Aurélie Boisbunon · Ingrid Grenet · Marc Schoenauer -
2021 Panel: The Role of Benchmarks in the Scientific Progress of Machine Learning »
Lora Aroyo · Samuel Bowman · Isabelle Guyon · Joaquin Vanschoren -
2021 : MetaDL: Few Shot Learning Competition with Novel Datasets from Practical Domains + Q&A »
Adrian El Baz · Isabelle Guyon · Zhengying Liu · Jan Van Rijn · Haozhe Sun · Sébastien Treguer · Wei-Wei Tu · Ihsan Ullah · Joaquin Vanschoren · Phan Ahn Vu -
2020 : NeurIPS RL Competitions: Learning to run a power network »
Antoine Marot -
2020 : Closing and ceremony award »
Antoine Marot -
2020 : L2RPN Post Challenge open questions »
Antoine Marot -
2020 : Winning the L2RPN challenge »
Antoine Marot -
2020 : Opening the L2RPN challenge @ NeurIPS2020 »
Antoine Marot -
2019 : Welcome and Opening Remarks »
Adrienne Mendrik · Wei-Wei Tu · Isabelle Guyon · Evelyne Viegas · Ming LI -
2018 : AutoDL challenge design and beta tests, Zhengying Liu, Olivier Bousquet, Andre Elisseeff, Isabelle Guyon, Adrien Pavao, Lisheng Sun-Hosoya, and Sebastien Treguer »
Zhengying Liu · Sébastien Treguer -
2018 : Antoine Marot - Learning to run a power network »
Antoine Marot -
2018 : Afternoon Welcome - Isabelle Guyon and Evelyne Viegas »
Isabelle Guyon -
2018 Workshop: CiML 2018 - Machine Learning competitions "in the wild": Playing in the real world or in real time »
Isabelle Guyon · Evelyne Viegas · Sergio Escalera · Jacob D Abernethy -
2018 : Datasets and Benchmarks for Causal Learning »
Csaba Szepesvari · Isabelle Guyon · Nicolai Meinshausen · David Blei · Elias Bareinboim · Bernhard Schölkopf · Pietro Perona -
2018 : AutoML3 - LifeLong ML with concept drift Challenge: Overview and award ceremony »
Hugo Jair Escalante · Isabelle Guyon · Daniel Silver · Evelyne Viegas · Wei-Wei Tu -
2018 : Evaluating Causation Coefficients »
Isabelle Guyon -
2017 Workshop: Machine Learning Challenges as a Research Tool »
Isabelle Guyon · Evelyne Viegas · Sergio Escalera · Jacob D Abernethy -
2017 : Introduction - Isabelle Guyon and Evelyne Viegas »
Isabelle Guyon -
2016 Workshop: Machine Learning for Spatiotemporal Forecasting »
Florin Popescu · Sergio Escalera · Xavier Baró · Stephane Ayache · Isabelle Guyon -
2016 : Gaming challenges and encouraging collaborations »
Sergio Escalera · Isabelle Guyon -
2016 Workshop: Challenges in Machine Learning: Gaming and Education »
Isabelle Guyon · Evelyne Viegas · Balázs Kégl · Ben Hamner · Sergio Escalera -
2016 Demonstration: Biometric applications of CNNs: get a job at "Impending Technologies"! »
Sergio Escalera · Isabelle Guyon · Baiyu Chen · Marc Quintana · Umut Güçlü · Yağmur Güçlütürk · Xavier Baró · Rob van Lier · Carlos Andujar · Marcel A. J. van Gerven · Bernhard E Boser · Luke Wang -
2015 Workshop: Challenges in Machine Learning (CiML 2015): "Open Innovation" and "Coopetitions" »
Isabelle Guyon · Evelyne Viegas · Ben Hamner · Balázs Kégl -
2014 Workshop: High-energy particle physics, machine learning, and the HiggsML data challenge (HEPML) »
Glen Cowan · Balázs Kégl · Kyle Cranmer · Gábor Melis · Tim Salimans · Vladimir Vava Gligorov · Daniel Whiteson · Lester Mackey · Wojciech Kotlowski · Roberto Díaz Morales · Pierre Baldi · Cecile Germain · David Rousseau · Isabelle Guyon · Tianqi Chen -
2014 Workshop: Challenges in Machine Learning workshop (CiML 2014) »
Isabelle Guyon · Evelyne Viegas · Percy Liang · Olga Russakovsky · Rinat Sergeev · Gábor Melis · Michele Sebag · Gustavo Stolovitzky · Jaume Bacardit · Michael S Kim · Ben Hamner -
2013 Workshop: NIPS 2013 Workshop on Causality: Large-scale Experiment Design and Inference of Causal Mechanisms »
Isabelle Guyon · Leon Bottou · Bernhard Schölkopf · Alexander Statnikov · Evelyne Viegas · james m robins -
2012 Demonstration: Gesture recognition with Kinect »
Isabelle Guyon -
2009 Workshop: Clustering: Science or art? Towards principled approaches »
Margareta Ackerman · Shai Ben-David · Avrim Blum · Isabelle Guyon · Ulrike von Luxburg · Robert Williamson · Reza Zadeh -
2009 Mini Symposium: Causality and Time Series Analysis »
Florin Popescu · Isabelle Guyon · Guido Nolte -
2009 Demonstration: Causality Workbench »
Isabelle Guyon -
2008 Workshop: Causality: objectives and assessment »
Isabelle Guyon · Dominik Janzing · Bernhard Schölkopf -
2007 Demonstration: CLOP: a Matlab Learning Object Package »
Amir Reza Saffari Azar Alamdari · Isabelle Guyon · Hugo Jair Escalante · Gökhan H Bakir · Gavin Cawley -
2006 Workshop: Multi-level Inference Workshop and Model Selection Game »
Isabelle Guyon