Timezone: »
This work addresses efficient inference and learning in switching Gaussian linear dynamical systems using a Rao-Blackwellised particle filter and a corresponding Monte Carlo objective. To improve the forecasting capabilities, we extend this classical model by conditionally linear state-to-switch dynamics, while leaving the partial tractability of the conditional Gaussian linear part intact. Furthermore, we use an auxiliary variable approach with a decoder-type neural network that allows for more complex non-linear emission models and multivariate observations. We propose a Monte Carlo objective that leverages the conditional linearity by computing the corresponding conditional expectations in closed-form and a suitable proposal distribution that is factorised similarly to the optimal proposal distribution. We evaluate our approach on several popular time series forecasting datasets as well as image streams of simulated physical systems. Our results show improved forecasting performance compared to other deep state-space model approaches.
Author Information
Richard Kurle (Technical University of Munich)
Syama Sundar Rangapuram (Amazon Research)
Emmanuel de Bézenac (Sorbonne Université)
Stephan Günnemann (Technical University of Munich)
Jan Gasthaus (Amazon / AWS)
More from the Same Authors
-
2021 : Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph Learning and Neuroscience »
Johannes C. Paetzold · Julian McGinnis · Suprosanna Shit · Ivan Ezhov · Paul Büschl · Chinmay Prabhakar · Anjany Sekuboyina · Mihail Todorov · Georgios Kaissis · Ali Ertürk · Stephan Günnemann · Bjoern Menze -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Dominique Beaini · Gabriele Corso · Prudencio Tossou · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : 3D Pre-training improves GNNs for Molecular Property Prediction »
Hannes Stärk · Gabriele Corso · Christian Dallago · Stephan Günnemann · Pietro Lió -
2021 : On Symmetries in Variational Bayesian Neural Nets »
Richard Kurle · Tim Januschowski · Jan Gasthaus · Bernie Wang -
2022 : torchode: A Parallel ODE Solver for PyTorch »
Marten Lienen · Stephan Günnemann -
2022 : Adaptive Sampling for Probabilistic Forecasting under Distribution Shift »
Luca Masserano · Syama Sundar Rangapuram · Shubham Kapoor · Rajbir Nirwan · Youngsuk Park · Michael Bohlke-Schneider -
2022 : Modeling Temporal Data as Continuous Functions with Process Diffusion »
Marin Biloš · Kashif Rasul · Anderson Schneider · Yuriy Nevmyvaka · Stephan Günnemann -
2022 : Training Differentially Private Graph Neural Networks with Random Walk Sampling »
Morgane Ayle · Jan Schuchardt · Lukas Gosch · Daniel Zügner · Stephan Günnemann -
2022 : Revisiting Robustness in Graph Machine Learning »
Lukas Gosch · Daniel Sturm · Simon Geisler · Stephan Günnemann -
2022 : Revisiting Robustness in Graph Machine Learning »
Lukas Gosch · Daniel Sturm · Simon Geisler · Stephan Günnemann -
2023 Poster: Add and Thin: Diffusion for Temporal Point Processes »
David Lüdke · Marin Biloš · Oleksandr Shchur · Marten Lienen · Stephan Günnemann -
2023 Poster: (Provable) Adversarial Robustness for Group Equivariant Tasks: Graphs, Point Clouds, Molecules, and More »
Jan Schuchardt · Yan Scholten · Stephan Günnemann -
2023 Poster: Adversarial Training for Graph Neural Networks »
Lukas Gosch · Simon Geisler · Daniel Sturm · Bertrand Charpentier · Daniel Zügner · Stephan Günnemann -
2023 Poster: Hierarchical Randomized Smoothing »
Yan Scholten · Jan Schuchardt · Aleksandar Bojchevski · Stephan Günnemann -
2022 : Contributed Talk: Revisiting Robustness in Graph Machine Learning »
Lukas Gosch · Daniel Sturm · Simon Geisler · Stephan Günnemann -
2022 Poster: Are Defenses for Graph Neural Networks Robust? »
Felix Mujkanovic · Simon Geisler · Stephan Günnemann · Aleksandar Bojchevski -
2022 Poster: Invariance-Aware Randomized Smoothing Certificates »
Jan Schuchardt · Stephan Günnemann -
2022 Poster: Predicting Cellular Responses to Novel Drug Perturbations at a Single-Cell Resolution »
Leon Hetzel · Simon Boehm · Niki Kilbertus · Stephan Günnemann · mohammad lotfollahi · Fabian Theis -
2022 Poster: Randomized Message-Interception Smoothing: Gray-box Certificates for Graph Neural Networks »
Yan Scholten · Jan Schuchardt · Simon Geisler · Aleksandar Bojchevski · Stephan Günnemann -
2021 Poster: Robustness of Graph Neural Networks at Scale »
Simon Geisler · Tobias Schmidt · Hakan Şirin · Daniel Zügner · Aleksandar Bojchevski · Stephan Günnemann -
2021 Poster: Directional Message Passing on Molecular Graphs via Synthetic Coordinates »
Johannes Gasteiger · Chandan Yeshwanth · Stephan Günnemann -
2021 Poster: Neural Flows: Efficient Alternative to Neural ODEs »
Marin Biloš · Johanna Sommer · Syama Sundar Rangapuram · Tim Januschowski · Stephan Günnemann -
2021 Poster: Detecting Anomalous Event Sequences with Temporal Point Processes »
Oleksandr Shchur · Ali Caner Turkmen · Tim Januschowski · Jan Gasthaus · Stephan Günnemann -
2021 Poster: GemNet: Universal Directional Graph Neural Networks for Molecules »
Johannes Gasteiger · Florian Becker · Stephan Günnemann -
2021 Poster: LEADS: Learning Dynamical Systems that Generalize Across Environments »
Yuan Yin · Ibrahim Ayed · Emmanuel de Bézenac · Nicolas Baskiotis · Patrick Gallinari -
2021 Poster: Probabilistic Forecasting: A Level-Set Approach »
Hilaf Hasson · Bernie Wang · Tim Januschowski · Jan Gasthaus -
2021 Poster: Deep Explicit Duration Switching Models for Time Series »
Abdul Fatir Ansari · Konstantinos Benidis · Richard Kurle · Ali Caner Turkmen · Harold Soh · Alexander Smola · Bernie Wang · Tim Januschowski -
2021 Poster: Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification »
Maximilian Stadler · Bertrand Charpentier · Simon Geisler · Daniel Zügner · Stephan Günnemann -
2021 Poster: Latent Matters: Learning Deep State-Space Models »
Alexej Klushyn · Richard Kurle · Maximilian Soelch · Botond Cseke · Patrick van der Smagt -
2020 Poster: Fast and Flexible Temporal Point Processes with Triangular Maps »
Oleksandr Shchur · Nicholas Gao · Marin Biloš · Stephan Günnemann -
2020 Poster: Reliable Graph Neural Networks via Robust Aggregation »
Simon Geisler · Daniel Zügner · Stephan Günnemann -
2020 Oral: Fast and Flexible Temporal Point Processes with Triangular Maps »
Oleksandr Shchur · Nicholas Gao · Marin Biloš · Stephan Günnemann -
2020 Poster: Normalizing Kalman Filters for Multivariate Time Series Analysis »
Emmanuel de Bézenac · Syama Sundar Rangapuram · Konstantinos Benidis · Michael Bohlke-Schneider · Richard Kurle · Lorenzo Stella · Hilaf Hasson · Patrick Gallinari · Tim Januschowski -
2020 Poster: Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts »
Bertrand Charpentier · Daniel Zügner · Stephan Günnemann -
2019 : Afternoon Coffee Break & Poster Session »
Heidi Komkov · Stanislav Fort · Zhaoyou Wang · Rose Yu · Ji Hwan Park · Samuel Schoenholz · Taoli Cheng · Ryan-Rhys Griffiths · Chase Shimmin · Surya Karthik Mukkavili · Philippe Schwaller · Christian Knoll · Yangzesheng Sun · Keiichi Kisamori · Gavin Graham · Gavin Portwood · Hsin-Yuan Huang · Paul Novello · Moritz Munchmeyer · Anna Jungbluth · Daniel Levine · Ibrahim Ayed · Steven Atkinson · Jan Hermann · Peter Grönquist · · Priyabrata Saha · Yannik Glaser · Lingge Li · Yutaro Iiyama · Rushil Anirudh · Maciej Koch-Janusz · Vikram Sundar · Francois Lanusse · Auralee Edelen · Jonas Köhler · Jacky H. T. Yip · jiadong guo · Xiangyang Ju · Adi Hanuka · Adrian Albert · Valentina Salvatelli · Mauro Verzetti · Javier Duarte · Eric Moreno · Emmanuel de Bézenac · Athanasios Vlontzos · Alok Singh · Thomas Klijnsma · Brad Neuberg · Paul Wright · Mustafa Mustafa · David Schmidt · Steven Farrell · Hao Sun -
2019 Poster: Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift »
Stephan Rabanser · Stephan Günnemann · Zachary Lipton -
2019 Poster: High-dimensional multivariate forecasting with low-rank Gaussian Copula Processes »
David Salinas · Michael Bohlke-Schneider · Laurent Callot · Roberto Medico · Jan Gasthaus -
2019 Poster: Diffusion Improves Graph Learning »
Johannes Gasteiger · Stefan Weißenberger · Stephan Günnemann -
2019 Poster: Uncertainty on Asynchronous Time Event Prediction »
Marin Biloš · Bertrand Charpentier · Stephan Günnemann -
2019 Poster: Learning Hierarchical Priors in VAEs »
Alexej Klushyn · Nutan Chen · Richard Kurle · Botond Cseke · Patrick van der Smagt -
2019 Spotlight: Uncertainty on Asynchronous Time Event Prediction »
Marin Biloš · Bertrand Charpentier · Stephan Günnemann -
2019 Spotlight: Learning Hierarchical Priors in VAEs »
Alexej Klushyn · Nutan Chen · Richard Kurle · Botond Cseke · Patrick van der Smagt -
2019 Poster: Certifiable Robustness to Graph Perturbations »
Aleksandar Bojchevski · Stephan Günnemann -
2018 Poster: Deep State Space Models for Time Series Forecasting »
Syama Sundar Rangapuram · Matthias W Seeger · Jan Gasthaus · Lorenzo Stella · Bernie Wang · Tim Januschowski