Timezone: »
Predicting calibrated confidence scores for multi-class deep networks is important for avoiding rare but costly mistakes. A common approach is to learn a post-hoc calibration function that transforms the output of the original network into calibrated confidence scores while maintaining the network's accuracy. However, previous post-hoc calibration techniques work only with simple calibration functions, potentially lacking sufficient representation to calibrate the complex function landscape of deep networks. In this work, we aim to learn general post-hoc calibration functions that can preserve the top-k predictions of any deep network. We call this family of functions intra order-preserving functions. We propose a new neural network architecture that represents a class of intra order-preserving functions by combining common neural network components. Additionally, we introduce order-invariant and diagonal sub-families, which can act as regularization for better generalization when the training data size is small. We show the effectiveness of the proposed method across a wide range of datasets and classifiers. Our method outperforms state-of-the-art post-hoc calibration methods, namely temperature scaling and Dirichlet calibration, in several evaluation metrics for the task.
Author Information
Amir Rahimi (Australian National University)
Amirreza Shaban (University of Washington)
Ching-An Cheng (Microsoft Research)
Richard I Hartley (Australian National University)
Byron Boots (University of Washington)
More from the Same Authors
-
2021 : Towards a Trace-Preserving Tensor Network Representation of Quantum Channels »
Siddarth Srinivasan · Sandesh Adhikary · Jacob Miller · Guillaume Rabusseau · Byron Boots -
2022 Poster: Contact-aware Human Motion Forecasting »
Wei Mao · miaomiao Liu · Richard I Hartley · Mathieu Salzmann -
2022 : AMORE: A Model-based Framework for Improving Arbitrary Baseline Policies with Offline Data »
Tengyang Xie · Mohak Bhardwaj · Nan Jiang · Ching-An Cheng -
2022 : Learning Semantics-Aware Locomotion Skills from Human Demonstrations »
Yuxiang Yang · Xiangyun Meng · Wenhao Yu · Tingnan Zhang · Jie Tan · Byron Boots -
2022 Spotlight: Lightning Talks 4B-3 »
Zicheng Zhang · Mancheng Meng · Antoine Guedon · Yue Wu · Wei Mao · Zaiyu Huang · Peihao Chen · Shizhe Chen · yongwei chen · Keqiang Sun · Yi Zhu · chen rui · Hanhui Li · Dongyu Ji · Ziyan Wu · miaomiao Liu · Pascal Monasse · Yu Deng · Shangzhe Wu · Pierre-Louis Guhur · Jiaolong Yang · Kunyang Lin · Makarand Tapaswi · Zhaoyang Huang · Terrence Chen · Jiabao Lei · Jianzhuang Liu · Vincent Lepetit · Zhenyu Xie · Richard I Hartley · Dinggang Shen · Xiaodan Liang · Runhao Zeng · Cordelia Schmid · Michael Kampffmeyer · Mathieu Salzmann · Ning Zhang · Fangyun Wei · Yabin Zhang · Fan Yang · Qifeng Chen · Wei Ke · Quan Wang · Thomas Li · qingling Cai · Kui Jia · Ivan Laptev · Mingkui Tan · Xin Tong · Hongsheng Li · Xiaodan Liang · Chuang Gan -
2022 Spotlight: Contact-aware Human Motion Forecasting »
Wei Mao · miaomiao Liu · Richard I Hartley · Mathieu Salzmann -
2022 Poster: MoCapAct: A Multi-Task Dataset for Simulated Humanoid Control »
Nolan Wagener · Andrey Kolobov · Felipe Vieira Frujeri · Ricky Loynd · Ching-An Cheng · Matthew Hausknecht -
2021 : Towards a Trace-Preserving Tensor Network Representation of Quantum Channels »
Siddarth Srinivasan · Sandesh Adhikary · Jacob Miller · Guillaume Rabusseau · Byron Boots -
2021 Poster: Bellman-consistent Pessimism for Offline Reinforcement Learning »
Tengyang Xie · Ching-An Cheng · Nan Jiang · Paul Mineiro · Alekh Agarwal -
2021 Poster: Heuristic-Guided Reinforcement Learning »
Ching-An Cheng · Andrey Kolobov · Adith Swaminathan -
2021 Oral: Bellman-consistent Pessimism for Offline Reinforcement Learning »
Tengyang Xie · Ching-An Cheng · Nan Jiang · Paul Mineiro · Alekh Agarwal -
2020 : Q&A: Byron Boots »
Byron Boots -
2020 : Invited Talk: Byron Boots »
Byron Boots -
2020 Poster: Policy Improvement via Imitation of Multiple Oracles »
Ching-An Cheng · Andrey Kolobov · Alekh Agarwal -
2020 Spotlight: Policy Improvement via Imitation of Multiple Oracles »
Ching-An Cheng · Andrey Kolobov · Alekh Agarwal -
2019 : Continuous Online Learning and New Insights to Online Imitation Learning »
Jonathan Lee · Ching-An Cheng · Ken Goldberg · Byron Boots -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2018 Poster: Orthogonally Decoupled Variational Gaussian Processes »
Hugh Salimbeni · Ching-An Cheng · Byron Boots · Marc Deisenroth -
2017 Poster: Variational Inference for Gaussian Process Models with Linear Complexity »
Ching-An Cheng · Byron Boots -
2016 Poster: Incremental Variational Sparse Gaussian Process Regression »
Ching-An Cheng · Byron Boots -
2014 Workshop: Riemannian geometry in machine learning, statistics and computer vision »
Minh Ha Quang · Vikas Sindhwani · Vittorio Murino · Michael Betancourt · Tom Fletcher · Richard I Hartley · Anuj Srivastava · Bart Vandereycken -
2013 Workshop: Workshop on Spectral Learning »
Byron Boots · Daniel Hsu · Borja Balle -
2010 Poster: Predictive State Temporal Difference Learning »
Byron Boots · Geoffrey Gordon -
2007 Oral: A Constraint Generation Approach to Learning Stable Linear Dynamical Systems »
Sajid M Siddiqi · Byron Boots · Geoffrey Gordon -
2007 Poster: A Constraint Generation Approach to Learning Stable Linear Dynamical Systems »
Sajid M Siddiqi · Byron Boots · Geoffrey Gordon