Timezone: »
Poster
Meta-Learning Stationary Stochastic Process Prediction with Convolutional Neural Processes
Andrew Foong · Wessel Bruinsma · Jonathan Gordon · Yann Dubois · James Requeima · Richard Turner
Stationary stochastic processes (SPs) are a key component of many probabilistic models, such as those for off-the-grid spatio-temporal data. They enable the statistical symmetry of underlying physical phenomena to be leveraged, thereby aiding generalization. Prediction in such models can be viewed as a translation equivariant map from observed data sets to predictive SPs, emphasizing the intimate relationship between stationarity and equivariance. Building on this, we propose the Convolutional Neural Process (ConvNP), which endows Neural Processes (NPs) with translation equivariance and extends convolutional conditional NPs to allow for dependencies in the predictive distribution. The latter enables ConvNPs to be deployed in settings which require coherent samples, such as Thompson sampling or conditional image completion. Moreover, we propose a new maximum-likelihood objective to replace the standard ELBO objective in NPs, which conceptually simplifies the framework and empirically improves performance. We demonstrate the strong performance and generalization capabilities of ConvNPs on 1D regression, image completion, and various tasks with real-world spatio-temporal data.
Author Information
Andrew Foong (University of Cambridge)
Wessel Bruinsma (University of Cambridge and Invenia Labs)
Jonathan Gordon (University of Cambridge)
Yann Dubois (Facebook AI)
James Requeima (University of Cambridge / Invenia Labs)
Richard Turner (University of Cambridge)
More from the Same Authors
-
2020 Poster: Efficient Low Rank Gaussian Variational Inference for Neural Networks »
Marcin Tomczak · Siddharth Swaroop · Richard Turner -
2020 Poster: On the Expressiveness of Approximate Inference in Bayesian Neural Networks »
Andrew Foong · David Burt · Yingzhen Li · Richard Turner -
2020 Poster: VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data »
Chao Ma · Sebastian Tschiatschek · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2020 Poster: Continual Deep Learning by Functional Regularisation of Memorable Past »
Pingbo Pan · Siddharth Swaroop · Alexander Immer · Runa Eschenhagen · Richard Turner · Mohammad Emtiyaz Khan -
2020 Oral: Continual Deep Learning by Functional Regularisation of Memorable Past »
Pingbo Pan · Siddharth Swaroop · Alexander Immer · Runa Eschenhagen · Richard Turner · Mohammad Emtiyaz Khan -
2020 Poster: Learning Optimal Representations with the Decodable Information Bottleneck »
Yann Dubois · Douwe Kiela · David Schwab · Ramakrishna Vedantam -
2020 Spotlight: Learning Optimal Representations with the Decodable Information Bottleneck »
Yann Dubois · Douwe Kiela · David Schwab · Ramakrishna Vedantam -
2019 Poster: Bayesian Batch Active Learning as Sparse Subset Approximation »
Robert Pinsler · Jonathan Gordon · Eric Nalisnick · José Miguel Hernández-Lobato -
2019 Poster: Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model »
Wenbo Gong · Sebastian Tschiatschek · Sebastian Nowozin · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2019 Poster: Fast and Flexible Multi-Task Classification using Conditional Neural Adaptive Processes »
James Requeima · Jonathan Gordon · John Bronskill · Sebastian Nowozin · Richard Turner -
2019 Spotlight: Fast and Flexible Multi-Task Classification using Conditional Neural Adaptive Processes »
James Requeima · Jonathan Gordon · John Bronskill · Sebastian Nowozin · Richard Turner -
2019 Poster: Practical Deep Learning with Bayesian Principles »
Kazuki Osawa · Siddharth Swaroop · Mohammad Emtiyaz Khan · Anirudh Jain · Runa Eschenhagen · Richard Turner · Rio Yokota -
2018 Poster: Infinite-Horizon Gaussian Processes »
Arno Solin · James Hensman · Richard Turner -
2018 Poster: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2018 Spotlight: Geometrically Coupled Monte Carlo Sampling »
Mark Rowland · Krzysztof Choromanski · François Chalus · Aldo Pacchiano · Tamas Sarlos · Richard Turner · Adrian Weller -
2017 Poster: Streaming Sparse Gaussian Process Approximations »
Thang Bui · Cuong Nguyen · Richard Turner -
2017 Poster: Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning »
Shixiang (Shane) Gu · Timothy Lillicrap · Richard Turner · Zoubin Ghahramani · Bernhard Schölkopf · Sergey Levine -
2016 Poster: Rényi Divergence Variational Inference »
Yingzhen Li · Richard Turner -
2015 Poster: Neural Adaptive Sequential Monte Carlo »
Shixiang (Shane) Gu · Zoubin Ghahramani · Richard Turner -
2015 Poster: Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels »
Felipe Tobar · Thang Bui · Richard Turner -
2015 Poster: Stochastic Expectation Propagation »
Yingzhen Li · José Miguel Hernández-Lobato · Richard Turner -
2015 Spotlight: Learning Stationary Time Series using Gaussian Processes with Nonparametric Kernels »
Felipe Tobar · Thang Bui · Richard Turner -
2015 Spotlight: Stochastic Expectation Propagation »
Yingzhen Li · José Miguel Hernández-Lobato · Richard Turner -
2014 Poster: Tree-structured Gaussian Process Approximations »
Thang Bui · Richard Turner -
2014 Spotlight: Tree-structured Gaussian Process Approximations »
Thang Bui · Richard Turner -
2011 Poster: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2011 Spotlight: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2009 Poster: Occlusive Components Analysis »
Jörg Lücke · Richard Turner · Maneesh Sahani · Marc Henniges -
2007 Workshop: Beyond Simple Cells: Probabilistic Models for Visual Cortical Processing »
Richard Turner · Pietro Berkes · Maneesh Sahani -
2007 Poster: Modeling Natural Sounds with Modulation Cascade Processes »
Richard Turner · Maneesh Sahani -
2007 Poster: On Sparsity and Overcompleteness in Image Models »
Pietro Berkes · Richard Turner · Maneesh Sahani