Timezone: »
A classic problem in machine learning and data analysis is to partition the vertices of a network in such a way that vertices in the same set are densely connected and vertices in different sets are loosely connected.
In practice, the most popular approaches rely on local search algorithms; not only for the ease of implementation and the efficiency, but also because of the accuracy of these methods on many real world graphs. For example, the Louvain algorithm -- a local search based algorithm -- has quickly become the method of choice for clustering in social networks. However, explaining the success of these methods remains an open problem: in the worst-case, the runtime can be up to \Omega(n^2), much worse than what is typically observed in practice, and no guarantee on the quality of its output can be established.
The goal of this paper is to shed light on the inner-workings of Louvain; only if we understand Louvain, can we rely on it and further improve it. To achieve this goal, we study the behavior of Louvain in the famous two-bloc Stochastic Block Model, which has a clear ground-truth and serves as the standard testbed for graph clustering algorithms. We provide valuable tools for the analysis of Louvain, but also for many other combinatorial algorithms. For example, we show that the probability for a node to have more edges towards its own community is 1/2 + \Omega( \min( \Delta(p-q)/\sqrt{np},1 )) in the SBM(n,p,q), where \Delta is the imbalance. Note that this bound is asymptotically tight and useful for the analysis of a wide range of algorithms (Louvain, Kernighan-Lin, Simulated Annealing etc).
Author Information
Vincent Cohen-Addad (CNRS & Sorbonne Université)
Adrian Kosowski (NavAlgo)
Frederik Mallmann-Trenn (King's College London)
David Saulpic (Sorbonne Université)
More from the Same Authors
-
2021 Spotlight: Improved Coresets and Sublinear Algorithms for Power Means in Euclidean Spaces »
Vincent Cohen-Addad · David Saulpic · Chris Schwiegelshohn -
2022 : Scalable and Improved Algorithms for Individually Fair Clustering »
Mohammadhossein Bateni · Vincent Cohen-Addad · Alessandro Epasto · Silvio Lattanzi -
2023 Poster: Multi-Swap k-Means++ »
Lorenzo Beretta · Vincent Cohen-Addad · Silvio Lattanzi · Nikos Parotsidis -
2023 Poster: Private estimation algorithms for stochastic block models and mixture models »
Hongjie Chen · Vincent Cohen-Addad · Tommaso d'Orsi · Alessandro Epasto · Jacob Imola · David Steurer · Stefan Tiegel -
2022 Poster: Improved Coresets for Euclidean $k$-Means »
Vincent Cohen-Addad · Kasper Green Larsen · David Saulpic · Chris Schwiegelshohn · Omar Ali Sheikh-Omar -
2022 Poster: Near-Optimal Correlation Clustering with Privacy »
Vincent Cohen-Addad · Chenglin Fan · Silvio Lattanzi · Slobodan Mitrovic · Ashkan Norouzi-Fard · Nikos Parotsidis · Jakub Tarnawski -
2022 Poster: Near-Optimal Private and Scalable $k$-Clustering »
Vincent Cohen-Addad · Alessandro Epasto · Vahab Mirrokni · Shyam Narayanan · Peilin Zhong -
2021 Poster: Improved Coresets and Sublinear Algorithms for Power Means in Euclidean Spaces »
Vincent Cohen-Addad · David Saulpic · Chris Schwiegelshohn -
2021 Poster: Parallel and Efficient Hierarchical k-Median Clustering »
Vincent Cohen-Addad · Silvio Lattanzi · Ashkan Norouzi-Fard · Christian Sohler · Ola Svensson -
2020 Poster: Fast and Accurate $k$-means++ via Rejection Sampling »
Vincent Cohen-Addad · Silvio Lattanzi · Ashkan Norouzi-Fard · Christian Sohler · Ola Svensson -
2019 Poster: Fully Dynamic Consistent Facility Location »
Vincent Cohen-Addad · Niklas Oskar D Hjuler · Nikos Parotsidis · David Saulpic · Chris Schwiegelshohn -
2019 Poster: Subquadratic High-Dimensional Hierarchical Clustering »
Amir Abboud · Vincent Cohen-Addad · Hussein Houdrouge -
2018 Poster: Clustering Redemption–Beyond the Impossibility of Kleinberg’s Axioms »
Vincent Cohen-Addad · Varun Kanade · Frederik Mallmann-Trenn -
2017 Poster: Hierarchical Clustering Beyond the Worst-Case »
Vincent Cohen-Addad · Varun Kanade · Frederik Mallmann-Trenn