`

Timezone: »

 
Poster
RD$^2$: Reward Decomposition with Representation Decomposition
Zichuan Lin · Derek Yang · Li Zhao · Tao Qin · Guangwen Yang · Tie-Yan Liu

Tue Dec 08 09:00 PM -- 11:00 PM (PST) @ Poster Session 2 #595
Reward decomposition, which aims to decompose the full reward into multiple sub-rewards, has been proven beneficial for improving sample efficiency in reinforcement learning. Existing works on discovering reward decomposition are mostly policy dependent, which constrains diverse or disentangled behavior between different policies induced by different sub-rewards. In this work, we propose a set of novel reward decomposition principles by constraining uniqueness and compactness of different state features/representations relevant to different sub-rewards. Our principles encourage sub-rewards with minimal relevant features, while maintaining the uniqueness of each sub-reward. We derive a deep learning algorithm based on our principle, and term our method as RD$^2$, since we learn reward decomposition and representation decomposition jointly. RD$^2$ is evaluated on a toy case, where we have the true reward structure, and some Atari environments where reward structure exists but is unknown to the agent to demonstrate the effectiveness of RD$^2$ against existing reward decomposition methods.

Author Information

Zichuan Lin (Tsinghua University)
Derek Yang (UC San Diego)
Li Zhao (Microsoft Research)
Tao Qin (Microsoft Research)
Guangwen Yang (Tsinghua University)
Tie-Yan Liu (Microsoft Research Asia)

Tie-Yan Liu is an assistant managing director of Microsoft Research Asia, leading the machine learning research area. He is very well known for his pioneer work on learning to rank and computational advertising, and his recent research interests include deep learning, reinforcement learning, and distributed machine learning. Many of his technologies have been transferred to Microsoft’s products and online services (such as Bing, Microsoft Advertising, Windows, Xbox, and Azure), and open-sourced through Microsoft Cognitive Toolkit (CNTK), Microsoft Distributed Machine Learning Toolkit (DMTK), and Microsoft Graph Engine. He has also been actively contributing to academic communities. He is an adjunct/honorary professor at Carnegie Mellon University (CMU), University of Nottingham, and several other universities in China. He has published 200+ papers in refereed conferences and journals, with over 17000 citations. He has won quite a few awards, including the best student paper award at SIGIR (2008), the most cited paper award at Journal of Visual Communications and Image Representation (2004-2006), the research break-through award (2012) and research-team-of-the-year award (2017) at Microsoft Research, and Top-10 Springer Computer Science books by Chinese authors (2015), and the most cited Chinese researcher by Elsevier (2017). He has been invited to serve as general chair, program committee chair, local chair, or area chair for a dozen of top conferences including SIGIR, WWW, KDD, ICML, NIPS, IJCAI, AAAI, ACL, ICTIR, as well as associate editor of ACM Transactions on Information Systems, ACM Transactions on the Web, and Neurocomputing. Tie-Yan Liu is a fellow of the IEEE, and a distinguished member of the ACM.

More from the Same Authors