Timezone: »
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching. We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT). While current randomized solvers for least-squares optimization prescribe an embedding dimension at least greater than the data dimension, we show that the embedding dimension can be reduced to the effective dimension of the optimization problem, and still preserve high-probability convergence guarantees. In this regard, we derive sharp matrix deviation inequalities over ellipsoids for both Gaussian and SRHT embeddings. Specifically, we improve on the constant of a classical Gaussian concentration bound whereas, for SRHT embeddings, our deviation inequality involves a novel technical approach. Leveraging these bounds, we are able to design a practical and adaptive algorithm which does not require to know the effective dimension beforehand. Our method starts with an initial embedding dimension equal to 1 and, over iterations, increases the embedding dimension up to the effective one at most. Hence, our algorithm improves the state-of-the-art computational complexity for solving regularized least-squares problems. Further, we show numerically that it outperforms standard iterative solvers such as the conjugate gradient method and its pre-conditioned version on several standard machine learning datasets.
Author Information
Jonathan Lacotte (Stanford University)
Mert Pilanci (Stanford)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: Effective Dimension Adaptive Sketching Methods for Faster Regularized Least-Squares Optimization »
Fri. Dec 11th 05:00 -- 07:00 AM Room Poster Session 6 #1855
More from the Same Authors
-
2021 Spotlight: Newton-LESS: Sparsification without Trade-offs for the Sketched Newton Update »
Michal Derezinski · Jonathan Lacotte · Mert Pilanci · Michael Mahoney -
2021 Poster: Newton-LESS: Sparsification without Trade-offs for the Sketched Newton Update »
Michal Derezinski · Jonathan Lacotte · Mert Pilanci · Michael Mahoney -
2020 Poster: Debiasing Distributed Second Order Optimization with Surrogate Sketching and Scaled Regularization »
Michal Derezinski · Burak Bartan · Mert Pilanci · Michael Mahoney -
2020 Poster: Optimal Iterative Sketching Methods with the Subsampled Randomized Hadamard Transform »
Jonathan Lacotte · Sifan Liu · Edgar Dobriban · Mert Pilanci -
2019 Poster: High-Dimensional Optimization in Adaptive Random Subspaces »
Jonathan Lacotte · Mert Pilanci · Marco Pavone