Timezone: »
The profile of a sample is the multiset of its symbol frequencies. We show that for samples of discrete distributions, profile entropy is a fundamental measure unifying the concepts of estimation, inference, and compression. Specifically, profile entropy: a) determines the speed of estimating the distribution relative to the best natural estimator; b) characterizes the rate of inferring all symmetric properties compared with the best estimator over any label-invariant distribution collection; c) serves as the limit of profile compression, for which we derive optimal near-linear-time block and sequential algorithms. To further our understanding of profile entropy, we investigate its attributes, provide algorithms for approximating its value, and determine its magnitude for numerous structural distribution families.
Author Information
Yi Hao (University of California, San Diego)
Fifth-year Ph.D. student supervised by Prof. Alon Orlitsky at UC San Diego. Broadly interested in Machine Learning, Learning Theory, Algorithm Design, Symbolic and Numerical Optimization. Seeking a summer 2020 internship in Data Science and Machine Learning.
Alon Orlitsky (University of California, San Diego)
More from the Same Authors
-
2020 Poster: Linear-Sample Learning of Low-Rank Distributions »
Ayush Jain · Alon Orlitsky -
2020 Poster: A General Method for Robust Learning from Batches »
Ayush Jain · Alon Orlitsky -
2020 Poster: Optimal Prediction of the Number of Unseen Species with Multiplicity »
Yi Hao · Ping Li -
2020 Poster: SURF: A Simple, Universal, Robust, Fast Distribution Learning Algorithm »
Yi Hao · Ayush Jain · Alon Orlitsky · Vaishakh Ravindrakumar -
2020 Spotlight: Optimal Prediction of the Number of Unseen Species with Multiplicity »
Yi Hao · Ping Li -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 Poster: Unified Sample-Optimal Property Estimation in Near-Linear Time »
Yi Hao · Alon Orlitsky -
2019 Poster: The Broad Optimality of Profile Maximum Likelihood »
Yi Hao · Alon Orlitsky -
2019 Spotlight: The Broad Optimality of Profile Maximum Likelihood »
Yi Hao · Alon Orlitsky -
2018 Poster: On Learning Markov Chains »
Yi Hao · Alon Orlitsky · Venkatadheeraj Pichapati -
2018 Poster: Data Amplification: A Unified and Competitive Approach to Property Estimation »
Yi Hao · Alon Orlitsky · Ananda Theertha Suresh · Yihong Wu -
2017 Poster: The power of absolute discounting: all-dimensional distribution estimation »
Moein Falahatgar · Mesrob Ohannessian · Alon Orlitsky · Venkatadheeraj Pichapati -
2017 Poster: Maxing and Ranking with Few Assumptions »
Moein Falahatgar · Yi Hao · Alon Orlitsky · Venkatadheeraj Pichapati · Vaishakh Ravindrakumar -
2016 Poster: Near-Optimal Smoothing of Structured Conditional Probability Matrices »
Moein Falahatgar · Mesrob Ohannessian · Alon Orlitsky -
2015 Poster: Competitive Distribution Estimation: Why is Good-Turing Good »
Alon Orlitsky · Ananda Theertha Suresh -
2015 Oral: Competitive Distribution Estimation: Why is Good-Turing Good »
Alon Orlitsky · Ananda Theertha Suresh -
2014 Poster: Near-Optimal-Sample Estimators for Spherical Gaussian Mixtures »
Ananda Theertha Suresh · Alon Orlitsky · Jayadev Acharya · Ashkan Jafarpour -
2012 Poster: Tight Bounds on Redundancy and Distinguishability of Label-Invariant Distributions »
Jayadev Acharya · Hirakendu Das · Alon Orlitsky