`

Timezone: »

 
Poster
Certified Robustness of Graph Convolution Networks for Graph Classification under Topological Attacks
Hongwei Jin · Zhan Shi · Venkata Jaya Shankar Ashish Peruri · Xinhua Zhang

Thu Dec 10 09:00 AM -- 11:00 AM (PST) @ Poster Session 5 #1586

Graph convolution networks (GCNs) have become effective models for graph classification. Similar to many deep networks, GCNs are vulnerable to adversarial attacks on graph topology and node attributes. Recently, a number of effective attack and defense algorithms have been developed, but certificates of robustness against \emph{topological perturbations} are currently available only for PageRank and label/feature propagation, while none has been designed for GCNs. We propose the first algorithm for certifying the robustness of GCNs to topological attacks in the application of \emph{graph classification}. Our method is based on Lagrange dualization and convex envelope, which result in tight approximation bounds that are efficiently computable by dynamic programming. When used in conjunction with robust training, it allows an increased number of graphs to be certified as robust.

Author Information

Hongwei Jin (University of Illinois at Chicago)
Zhan Shi (University of Illinois at Chicago)
Venkata Jaya Shankar Ashish Peruri (University of Illinois at Chicago)
Xinhua Zhang (UIC)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors

  • 2020 Poster: Proximal Mapping for Deep Regularization »
    Mao Li · Yingyi Ma · Xinhua Zhang
  • 2020 Spotlight: Proximal Mapping for Deep Regularization »
    Mao Li · Yingyi Ma · Xinhua Zhang
  • 2019 : Poster Session »
    Ahana Ghosh · Javad Shafiee · Akhilan Boopathy · Alex Tamkin · Theodoros Vasiloudis · Vedant Nanda · Ali Baheri · Paul Fieguth · Andrew Bennett · Guanya Shi · Hao Liu · Arushi Jain · Jacob Tyo · Benjie Wang · Boxiao Chen · Carroll Wainwright · Chandramouli Shama Sastry · Chao Tang · Daniel S. Brown · David Inouye · David Venuto · Dhruv Ramani · Dimitrios Diochnos · Divyam Madaan · Dmitrii Krashenikov · Joel Oren · Doyup Lee · Eleanor Quint · elmira amirloo · Matteo Pirotta · Gavin Hartnett · Geoffroy Dubourg-Felonneau · Gokul Swamy · Pin-Yu Chen · Ilija Bogunovic · Jason Carter · Javier Garcia-Barcos · Jeet Mohapatra · Jesse Zhang · Jian Qian · John Martin · Oliver Richter · Federico Zaiter · Tsui-Wei Weng · Karthik Abinav Sankararaman · Kyriakos Polymenakos · Lan Hoang · mahdieh abbasi · Marco Gallieri · Mathieu Seurin · Matteo Papini · Matteo Turchetta · Matthew Sotoudeh · Mehrdad Hosseinzadeh · Nathan Fulton · Masatoshi Uehara · Niranjani Prasad · Oana-Maria Camburu · Patrik Kolaric · Philipp Renz · Prateek Jaiswal · Reazul Hasan Russel · Riashat Islam · Rishabh Agarwal · Alexander Aldrick · Sachin Vernekar · Sahin Lale · Sai Kiran Narayanaswami · Samuel Daulton · Sanjam Garg · Sebastian East · Shun Zhang · Soheil Dsidbari · Justin Goodwin · Victoria Krakovna · Wenhao Luo · Wesley Chung · Yuanyuan Shi · Yuh-Shyang Wang · Hongwei Jin · Ziping Xu
  • 2018 Poster: Distributionally Robust Graphical Models »
    Rizal Fathony · Ashkan Rezaei · Mohammad Ali Bashiri · Xinhua Zhang · Brian Ziebart
  • 2017 Poster: Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction »
    Zhan Shi · Xinhua Zhang · Yaoliang Yu
  • 2017 Spotlight: Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction »
    Zhan Shi · Xinhua Zhang · Yaoliang Yu