Timezone: »
We propose a framework that lifts the capabilities of graph convolutional networks (GCNs) to scenarios where no input graph is given and increases their robustness to adversarial attacks. We formulate a joint probabilistic model that considers a prior distribution over graphs along with a GCN-based likelihood and develop a stochastic variational inference algorithm to estimate the graph posterior and the GCN parameters jointly. To address the problem of propagating gradients through latent variables drawn from discrete distributions, we use their continuous relaxations known as Concrete distributions. We show that, on real datasets, our approach can outperform state-of-the-art Bayesian and non-Bayesian graph neural network algorithms on the task of semi-supervised classification in the absence of graph data and when the network structure is subjected to adversarial perturbations.
Author Information
Pantelis Elinas (CSIRO's Data61)
Edwin Bonilla (CSIRO's Data61)
Louis Tiao (University of Sydney)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Spotlight: Variational Inference for Graph Convolutional Networks in the Absence of Graph Data and Adversarial Settings »
Tue. Dec 8th 03:10 -- 03:20 AM Room Orals & Spotlights: Representation/Relational
More from the Same Authors
-
2021 Poster: Model Selection for Bayesian Autoencoders »
Ba-Hien Tran · Simone Rossi · Dimitrios Milios · Pietro Michiardi · Edwin Bonilla · Maurizio Filippone -
2020 : Bayesian optimization by density ratio estimation »
Louis Tiao · Aaron Klein · Cedric Archambeau · Edwin Bonilla · Matthias W Seeger · Fabio Ramos -
2020 Poster: Quantile Propagation for Wasserstein-Approximate Gaussian Processes »
Rui Zhang · Christian Walder · Edwin Bonilla · Marian-Andrei Rizoiu · Lexing Xie -
2019 : Outstanding Contribution Talk: Variational Graph Convolutional Networks »
Edwin Bonilla -
2019 Poster: Structured Variational Inference in Continuous Cox Process Models »
Virginia Aglietti · Edwin Bonilla · Theodoros Damoulas · Sally Cripps -
2015 Poster: Scalable Inference for Gaussian Process Models with Black-Box Likelihoods »
Amir Dezfouli · Edwin Bonilla -
2014 Poster: Extended and Unscented Gaussian Processes »
Daniel M Steinberg · Edwin Bonilla -
2014 Spotlight: Extended and Unscented Gaussian Processes »
Daniel M Steinberg · Edwin Bonilla -
2014 Poster: Automated Variational Inference for Gaussian Process Models »
Trung V Nguyen · Edwin Bonilla -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2011 Poster: Improving Topic Coherence with Regularized Topic Models »
David Newman · Edwin Bonilla · Wray Buntine -
2010 Poster: Gaussian Process Preference Elicitation »
Edwin Bonilla · Shengbo Guo · Scott Sanner -
2007 Poster: Multi-task Gaussian Process Prediction »
Edwin Bonilla · Kian Ming A Chai · Chris Williams -
2007 Spotlight: Multi-task Gaussian Process Prediction »
Edwin Bonilla · Kian Ming A Chai · Chris Williams