Timezone: »
The accuracy of deep convolutional neural networks (CNNs) generally improves when fueled with high resolution images. However, this often comes at a high computational cost and high memory footprint. Inspired by the fact that not all regions in an image are task-relevant, we propose a novel framework that performs efficient image classification by processing a sequence of relatively small inputs, which are strategically selected from the original image with reinforcement learning. Such a dynamic decision process naturally facilitates adaptive inference at test time, i.e., it can be terminated once the model is sufficiently confident about its prediction and thus avoids further redundant computation. Notably, our framework is general and flexible as it is compatible with most of the state-of-the-art light-weighted CNNs (such as MobileNets, EfficientNets and RegNets), which can be conveniently deployed as the backbone feature extractor. Experiments on ImageNet show that our method consistently improves the computational efficiency of a wide variety of deep models. For example, it further reduces the average latency of the highly efficient MobileNet-V3 on an iPhone XS Max by 20% without sacrificing accuracy. Code and pre-trained models are available at https://github.com/blackfeather-wang/GFNet-Pytorch.
Author Information
Yulin Wang (Tsinghua University)
Kangchen Lv (Tsinghua University)
Rui Huang (Tsinghua University)
Shiji Song (Department of Automation, Tsinghua University)
Le Yang (Tsinghua University)
Gao Huang (Tsinghua)
More from the Same Authors
-
2021 Spotlight: Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning »
Yiqin Yang · Xiaoteng Ma · Chenghao Li · Zewu Zheng · Qiyuan Zhang · Gao Huang · Jun Yang · Qianchuan Zhao -
2022 Poster: Contrastive Language-Image Pre-Training with Knowledge Graphs »
Xuran Pan · Tianzhu Ye · Dongchen Han · Shiji Song · Gao Huang -
2022 Poster: Efficient Knowledge Distillation from Model Checkpoints »
Chaofei Wang · Qisen Yang · Rui Huang · Shiji Song · Gao Huang -
2022 Spotlight: Lightning Talks 1B-3 »
Chaofei Wang · Qixun Wang · Jing Xu · Long-Kai Huang · Xi Weng · Fei Ye · Harsh Rangwani · shrinivas ramasubramanian · Yifei Wang · Qisen Yang · Xu Luo · Lei Huang · Adrian G. Bors · Ying Wei · Xinglin Pan · Sho Takemori · Hong Zhu · Rui Huang · Lei Zhao · Yisen Wang · Kato Takashi · Shiji Song · Yanan Li · Rao Anwer · Yuhei Umeda · Salman Khan · Gao Huang · Wenjie Pei · Fahad Shahbaz Khan · Venkatesh Babu R · Zenglin Xu -
2022 Spotlight: Efficient Knowledge Distillation from Model Checkpoints »
Chaofei Wang · Qisen Yang · Rui Huang · Shiji Song · Gao Huang -
2022 Poster: Latency-aware Spatial-wise Dynamic Networks »
Yizeng Han · Zhihang Yuan · Yifan Pu · Chenhao Xue · Shiji Song · Guangyu Sun · Gao Huang -
2021 Poster: Believe What You See: Implicit Constraint Approach for Offline Multi-Agent Reinforcement Learning »
Yiqin Yang · Xiaoteng Ma · Chenghao Li · Zewu Zheng · Qiyuan Zhang · Gao Huang · Jun Yang · Qianchuan Zhao -
2021 Poster: Searching Parameterized AP Loss for Object Detection »
Tao Chenxin · Zizhang Li · Xizhou Zhu · Gao Huang · Yong Liu · jifeng dai -
2021 Poster: Not All Images are Worth 16x16 Words: Dynamic Transformers for Efficient Image Recognition »
Yulin Wang · Rui Huang · Shiji Song · Zeyi Huang · Gao Huang -
2019 Poster: Regularized Anderson Acceleration for Off-Policy Deep Reinforcement Learning »
Wenjie Shi · Shiji Song · Hui Wu · Ya-Chu Hsu · Cheng Wu · Gao Huang -
2019 Poster: Implicit Semantic Data Augmentation for Deep Networks »
Yulin Wang · Xuran Pan · Shiji Song · Hong Zhang · Gao Huang · Cheng Wu -
2019 Poster: Asymmetric Valleys: Beyond Sharp and Flat Local Minima »
Haowei He · Gao Huang · Yang Yuan -
2019 Spotlight: Asymmetric Valleys: Beyond Sharp and Flat Local Minima »
Haowei He · Gao Huang · Yang Yuan