Timezone: »

 
Poster
Learning Compositional Rules via Neural Program Synthesis
Maxwell Nye · Armando Solar-Lezama · Josh Tenenbaum · Brenden Lake

Thu Dec 10 09:00 AM -- 11:00 AM (PST) @ Poster Session 5 #1570

Many aspects of human reasoning, including language, require learning rules from very little data. Humans can do this, often learning systematic rules from very few examples, and combining these rules to form compositional rule-based systems. Current neural architectures, on the other hand, often fail to generalize in a compositional manner, especially when evaluated in ways that vary systematically from training. In this work, we present a neuro-symbolic model which learns entire rule systems from a small set of examples. Instead of directly predicting outputs from inputs, we train our model to induce the explicit system of rules governing a set of previously seen examples, drawing upon techniques from the neural program synthesis literature. Our rule-synthesis approach outperforms neural meta-learning techniques in three domains: an artificial instruction-learning domain used to evaluate human learning, the SCAN challenge datasets, and learning rule-based translations of number words into integers for a wide range of human languages.

Author Information

Maxwell Nye (MIT)
Armando Solar-Lezama (MIT)
Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

Brenden Lake (New York University)

More from the Same Authors