Timezone: »
What is a fair performance metric? We consider the choice of fairness metrics through the lens of metric elicitation -- a principled framework for selecting performance metrics that best reflect implicit preferences. The use of metric elicitation enables a practitioner to tune the performance and fairness metrics to the task, context, and population at hand. Specifically, we propose a novel strategy to elicit group-fair performance metrics for multiclass classification problems with multiple sensitive groups that also includes selecting the trade-off between predictive performance and fairness violation. The proposed elicitation strategy requires only relative preference feedback and is robust to both finite sample and feedback noise.
Author Information
Gaurush Hiranandani (UIUC)
Harikrishna Narasimhan (Google Research)
Sanmi Koyejo (Illinois / Google)
Sanmi (Oluwasanmi) Koyejo an Assistant Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Koyejo's research interests are in the development and analysis of probabilistic and statistical machine learning techniques motivated by, and applied to various modern big data problems. He is particularly interested in the analysis of large scale neuroimaging data. Koyejo completed his Ph.D in Electrical Engineering at the University of Texas at Austin advised by Joydeep Ghosh, and completed postdoctoral research at Stanford University with a focus on developing Machine learning techniques for neuroimaging data. His postdoctoral research was primarily with Russell A. Poldrack and Pradeep Ravikumar. Koyejo has been the recipient of several awards including the outstanding NCE/ECE student award, a best student paper award from the conference on uncertainty in artificial intelligence (UAI) and a trainee award from the Organization for Human Brain Mapping (OHBM).
More from the Same Authors
-
2020 Poster: CSER: Communication-efficient SGD with Error Reset »
Cong Xie · Shuai Zheng · Sanmi Koyejo · Indranil Gupta · Mu Li · Haibin Lin -
2020 Poster: Approximate Heavily-Constrained Learning with Lagrange Multiplier Models »
Harikrishna Narasimhan · Andrew Cotter · Yichen Zhou · Serena Wang · Wenshuo Guo -
2020 Poster: Fairness with Overlapping Groups; a Probabilistic Perspective »
Forest Yang · Mouhamadou M Cisse · Sanmi Koyejo -
2020 Poster: Consistent Plug-in Classifiers for Complex Objectives and Constraints »
Shiv Kumar Tavker · Harish Guruprasad Ramaswamy · Harikrishna Narasimhan -
2020 Poster: Robust Optimization for Fairness with Noisy Protected Groups »
Serena Wang · Wenshuo Guo · Harikrishna Narasimhan · Andrew Cotter · Maya Gupta · Michael Jordan -
2019 Poster: Optimizing Generalized Rate Metrics with Three Players »
Harikrishna Narasimhan · Andrew Cotter · Maya Gupta -
2019 Poster: Learning Sparse Distributions using Iterative Hard Thresholding »
Jacky Zhang · Rajiv Khanna · Anastasios Kyrillidis · Sanmi Koyejo -
2019 Oral: Optimizing Generalized Rate Metrics with Three Players »
Harikrishna Narasimhan · Andrew Cotter · Maya Gupta -
2019 Poster: On Making Stochastic Classifiers Deterministic »
Andrew Cotter · Maya Gupta · Harikrishna Narasimhan -
2019 Oral: On Making Stochastic Classifiers Deterministic »
Andrew Cotter · Maya Gupta · Harikrishna Narasimhan -
2019 Poster: Multiclass Performance Metric Elicitation »
Gaurush Hiranandani · Shant Boodaghians · Ruta Mehta · Sanmi Koyejo -
2019 Tutorial: Representation Learning and Fairness »
Moustapha Cisse · Sanmi Koyejo -
2016 Oral: Examples are not enough, learn to criticize! Criticism for Interpretability »
Been Kim · Sanmi Koyejo · Rajiv Khanna -
2016 Poster: Generalized Correspondence-LDA Models (GC-LDA) for Identifying Functional Regions in the Brain »
Timothy Rubin · Sanmi Koyejo · Michael Jones · Tal Yarkoni -
2016 Poster: Preference Completion from Partial Rankings »
Suriya Gunasekar · Sanmi Koyejo · Joydeep Ghosh -
2016 Poster: Examples are not enough, learn to criticize! Criticism for Interpretability »
Been Kim · Sanmi Koyejo · Rajiv Khanna -
2015 Poster: Consistent Multilabel Classification »
Oluwasanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: On Prior Distributions and Approximate Inference for Structured Variables »
Sanmi Koyejo · Rajiv Khanna · Joydeep Ghosh · Russell Poldrack -
2014 Poster: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Spotlight: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Sparse Bayesian structure learning with dependent relevance determination prior »
Anqi Wu · Mijung Park · Sanmi Koyejo · Jonathan W Pillow