Timezone: »
Robustness of machine learning models to various adversarial and non-adversarial corruptions continues to be of interest. In this paper, we introduce the notion of the boundary thickness of a classifier, and we describe its connection with and usefulness for model robustness. Thick decision boundaries lead to improved performance, while thin decision boundaries lead to overfitting (e.g., measured by the robust generalization gap between training and testing) and lower robustness. We show that a thicker boundary helps improve robustness against adversarial examples (e.g., improving the robust test accuracy of adversarial training) as well as so-called out-of-distribution (OOD) transforms, and we show that many commonly-used regularization and data augmentation procedures can increase boundary thickness. On the theoretical side, we establish that maximizing boundary thickness during training is akin to the so-called mixup training. Using these observations, we show that noise-augmentation on mixup training further increases boundary thickness, thereby combating vulnerability to various forms of adversarial attacks and OOD transforms. We can also show that the performance improvement in several lines of recent work happens in conjunction with a thicker boundary.
Author Information
Yaoqing Yang (UC Berkeley)
Rajiv Khanna (University of California, Berkeley)
Yaodong Yu (University of California, Berkeley)
Amir Gholami (University of California, Berkeley)
Kurt Keutzer (EECS, UC Berkeley)
Joseph Gonzalez (UC Berkeley)
Kannan Ramchandran (UC Berkeley)
Michael Mahoney (UC Berkeley)
More from the Same Authors
-
2021 : TenSet: A Large-scale Program Performance Dataset for Learned Tensor Compilers »
Lianmin Zheng · Ruochen Liu · Junru Shao · Tianqi Chen · Joseph Gonzalez · Ion Stoica · Ameer Haj-Ali -
2021 Spotlight: Newton-LESS: Sparsification without Trade-offs for the Sketched Newton Update »
Michal Derezinski · Jonathan Lacotte · Mert Pilanci · Michael Mahoney -
2021 : Distribution Preserving Bayesian Coresets using Set Constraints »
Shovik Guha · Rajiv Khanna · Sanmi Koyejo -
2021 : An Empirical Study of Pre-trained Models on Out-of-distribution Generalization »
Yaodong Yu · Heinrich Jiang · Dara Bahri · Hossein Mobahi · Seungyeon Kim · Ankit Rawat · Andreas Veit · Yi Ma -
2021 : Effect of Model Size on Worst-group Generalization »
Alan Pham · Eunice Chan · Vikranth Srivatsa · Dhruba Ghosh · Yaoqing Yang · Yaodong Yu · Ruiqi Zhong · Joseph Gonzalez · Jacob Steinhardt -
2021 : C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks »
Tianjun Zhang · Ben Eysenbach · Russ Salakhutdinov · Sergey Levine · Joseph Gonzalez -
2023 Poster: Characterizing Scaling and Transfer Learning of Neural Networks for Scientific Machine Learning »
Shashank Subramanian · Peter Harrington · Kurt Keutzer · Wahid Bhimji · Dmitriy Morozov · Michael Mahoney · Amir Gholami -
2023 Poster: Learning a 1-layer conditional generative model in total variation »
Ajil Jalal · Justin Kang · Ananya Uppal · Kannan Ramchandran · Eric Price -
2023 Poster: Temperature Balancing, Layer-wise Weight Analysis, and Neural Network Training »
Yefan Zhou · TIANYU PANG · Keqin Liu · charles martin · Michael Mahoney · Yaoqing Yang -
2023 Poster: When are ensembles really effective? »
Ryan Theisen · Hyunsuk Kim · Yaoqing Yang · Liam Hodgkinson · Michael Mahoney -
2023 Poster: A Heavy-Tailed Algebra for Probabilistic Programming »
Feynman Liang · Liam Hodgkinson · Michael Mahoney -
2023 Poster: White-Box Transformers via Sparse Rate Reduction »
Yaodong Yu · Sam Buchanan · Druv Pai · Tianzhe Chu · Ziyang Wu · Shengbang Tong · Benjamin Haeffele · Yi Ma -
2023 Poster: Big Little Transformer Decoder »
Sehoon Kim · Karttikeya Mangalam · Suhong Moon · Jitendra Malik · Michael Mahoney · Amir Gholami · Kurt Keutzer -
2023 Poster: Greedy Pruning with Group Lasso Provably Generalizes for Matrix Sensing »
Nived Rajaraman · Fnu Devvrit · Aryan Mokhtari · Kannan Ramchandran -
2023 Poster: Diversify Your Vision Datasets with Automatic Diffusion-based Augmentation »
Lisa Dunlap · Alyssa Umino · Han Zhang · Jiezhi Yang · Joseph Gonzalez · Trevor Darrell -
2023 Poster: Online Pricing for Multi-User Multi-Item Markets »
Yigit Efe Erginbas · Soham Phade · Thomas Courtade · Kannan Ramchandran -
2023 Poster: Language Models are Visual Reasoning Coordinators »
Liangyu Chen · Bo Li · Sheng Shen · Jingkang Yang · Chunyuan Li · Kurt Keutzer · Trevor Darrell · Ziwei Liu -
2023 Poster: Vicuna Evaluation: Exploring LLM-as-a-Judge and Chatbot Arena »
Lianmin Zheng · Wei-Lin Chiang · Ying Sheng · Siyuan Zhuang · Zhanghao Wu · Yonghao Zhuang · Zi Lin · Zhuohan Li · Dacheng Li · Eric Xing · Hao Zhang · Joseph Gonzalez · Ion Stoica -
2023 Tutorial: Recent and Upcoming Developments in Randomized Numerical Linear Algebra for ML »
Michal Derezinski · Michael Mahoney -
2023 Workshop: Heavy Tails in ML: Structure, Stability, Dynamics »
Mert Gurbuzbalaban · Stefanie Jegelka · Michael Mahoney · Umut Simsekli -
2022 : A Fast, Fisher Based Pruning of Transformers without Retraining »
Amir Gholami -
2022 Poster: K-LITE: Learning Transferable Visual Models with External Knowledge »
Sheng Shen · Chunyuan Li · Xiaowei Hu · Yujia Xie · Jianwei Yang · Pengchuan Zhang · Zhe Gan · Lijuan Wang · Lu Yuan · Ce Liu · Kurt Keutzer · Trevor Darrell · Anna Rohrbach · Jianfeng Gao -
2022 Poster: A Fast Post-Training Pruning Framework for Transformers »
Woosuk Kwon · Sehoon Kim · Michael Mahoney · Joseph Hassoun · Kurt Keutzer · Amir Gholami -
2022 Poster: Squeezeformer: An Efficient Transformer for Automatic Speech Recognition »
Sehoon Kim · Amir Gholami · Albert Shaw · Nicholas Lee · Karttikeya Mangalam · Jitendra Malik · Michael Mahoney · Kurt Keutzer -
2022 Poster: Robust Calibration with Multi-domain Temperature Scaling »
Yaodong Yu · Stephen Bates · Yi Ma · Michael Jordan -
2022 Poster: LSAR: Efficient Leverage Score Sampling Algorithm for the Analysis of Big Time Series Data »
Ali Eshragh · Fred Roosta · Asef Nazari · Michael Mahoney -
2022 Poster: What You See is What You Get: Principled Deep Learning via Distributional Generalization »
Bogdan Kulynych · Yao-Yuan Yang · Yaodong Yu · Jarosław Błasiok · Preetum Nakkiran -
2022 Poster: TCT: Convexifying Federated Learning using Bootstrapped Neural Tangent Kernels »
Yaodong Yu · Alexander Wei · Sai Praneeth Karimireddy · Yi Ma · Michael Jordan -
2022 Poster: Minimax Optimal Online Imitation Learning via Replay Estimation »
Gokul Swamy · Nived Rajaraman · Matt Peng · Sanjiban Choudhury · J. Bagnell · Steven Wu · Jiantao Jiao · Kannan Ramchandran -
2021 : Q&A with Michael Mahoney »
Michael Mahoney -
2021 : Putting Randomized Matrix Algorithms in LAPACK, and Connections with Second-order Stochastic Optimization, Michael Mahoney »
Michael Mahoney -
2021 Poster: Accelerating Quadratic Optimization with Reinforcement Learning »
Jeffrey Ichnowski · Paras Jain · Bartolomeo Stellato · Goran Banjac · Michael Luo · Francesco Borrelli · Joseph Gonzalez · Ion Stoica · Ken Goldberg -
2021 Poster: Hindsight Task Relabelling: Experience Replay for Sparse Reward Meta-RL »
Charles Packer · Pieter Abbeel · Joseph Gonzalez -
2021 Poster: Newton-LESS: Sparsification without Trade-offs for the Sketched Newton Update »
Michal Derezinski · Jonathan Lacotte · Mert Pilanci · Michael Mahoney -
2021 Poster: RLlib Flow: Distributed Reinforcement Learning is a Dataflow Problem »
Eric Liang · Zhanghao Wu · Michael Luo · Sven Mika · Joseph Gonzalez · Ion Stoica -
2021 Poster: Noisy Recurrent Neural Networks »
Soon Hoe Lim · N. Benjamin Erichson · Liam Hodgkinson · Michael Mahoney -
2021 Poster: Hessian Eigenspectra of More Realistic Nonlinear Models »
Zhenyu Liao · Michael Mahoney -
2021 Poster: Characterizing possible failure modes in physics-informed neural networks »
Aditi Krishnapriyan · Amir Gholami · Shandian Zhe · Robert Kirby · Michael Mahoney -
2021 Poster: Representing Long-Range Context for Graph Neural Networks with Global Attention »
Zhanghao Wu · Paras Jain · Matthew Wright · Azalia Mirhoseini · Joseph Gonzalez · Ion Stoica -
2021 Poster: On the Value of Interaction and Function Approximation in Imitation Learning »
Nived Rajaraman · Yanjun Han · Lin Yang · Jingbo Liu · Jiantao Jiao · Kannan Ramchandran -
2021 Poster: NovelD: A Simple yet Effective Exploration Criterion »
Tianjun Zhang · Huazhe Xu · Xiaolong Wang · Yi Wu · Kurt Keutzer · Joseph Gonzalez · Yuandong Tian -
2021 Poster: MADE: Exploration via Maximizing Deviation from Explored Regions »
Tianjun Zhang · Paria Rashidinejad · Jiantao Jiao · Yuandong Tian · Joseph Gonzalez · Stuart Russell -
2021 Poster: Learning Space Partitions for Path Planning »
Kevin Yang · Tianjun Zhang · Chris Cummins · Brandon Cui · Benoit Steiner · Linnan Wang · Joseph Gonzalez · Dan Klein · Yuandong Tian -
2021 Poster: Taxonomizing local versus global structure in neural network loss landscapes »
Yaoqing Yang · Liam Hodgkinson · Ryan Theisen · Joe Zou · Joseph Gonzalez · Kannan Ramchandran · Michael Mahoney -
2021 Poster: Stateful ODE-Nets using Basis Function Expansions »
Alejandro Queiruga · N. Benjamin Erichson · Liam Hodgkinson · Michael Mahoney -
2021 Oral: Hessian Eigenspectra of More Realistic Nonlinear Models »
Zhenyu Liao · Michael Mahoney -
2020 Poster: Debiasing Distributed Second Order Optimization with Surrogate Sketching and Scaled Regularization »
Michal Derezinski · Burak Bartan · Mert Pilanci · Michael Mahoney -
2020 Poster: HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks »
Zhen Dong · Zhewei Yao · Daiyaan Arfeen · Amir Gholami · Michael Mahoney · Kurt Keutzer -
2020 Poster: Exact expressions for double descent and implicit regularization via surrogate random design »
Michal Derezinski · Feynman Liang · Michael Mahoney -
2020 Poster: Improved guarantees and a multiple-descent curve for Column Subset Selection and the Nystrom method »
Michal Derezinski · Rajiv Khanna · Michael Mahoney -
2020 Poster: Precise expressions for random projections: Low-rank approximation and randomized Newton »
Michal Derezinski · Feynman Liang · Zhenyu Liao · Michael Mahoney -
2020 Oral: Improved guarantees and a multiple-descent curve for Column Subset Selection and the Nystrom method »
Michal Derezinski · Rajiv Khanna · Michael Mahoney -
2020 Poster: A random matrix analysis of random Fourier features: beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent »
Zhenyu Liao · Romain Couillet · Michael Mahoney -
2020 Poster: A Statistical Framework for Low-bitwidth Training of Deep Neural Networks »
Jianfei Chen · Yu Gai · Zhewei Yao · Michael Mahoney · Joseph Gonzalez -
2020 Poster: Toward the Fundamental Limits of Imitation Learning »
Nived Rajaraman · Lin Yang · Jiantao Jiao · Kannan Ramchandran -
2020 Poster: An Efficient Framework for Clustered Federated Learning »
Avishek Ghosh · Jichan Chung · Dong Yin · Kannan Ramchandran -
2020 Poster: Learning Diverse and Discriminative Representations via the Principle of Maximal Coding Rate Reduction »
Yaodong Yu · Kwan Ho Ryan Chan · Chong You · Chaobing Song · Yi Ma -
2019 : Final remarks »
Anastasios Kyrillidis · Albert Berahas · Fred Roosta · Michael Mahoney -
2019 Workshop: Beyond first order methods in machine learning systems »
Anastasios Kyrillidis · Albert Berahas · Fred Roosta · Michael Mahoney -
2019 Workshop: MLSys: Workshop on Systems for ML »
Aparna Lakshmiratan · Siddhartha Sen · Joseph Gonzalez · Dan Crankshaw · Sarah Bird -
2019 : Opening Remarks »
Anastasios Kyrillidis · Albert Berahas · Fred Roosta · Michael Mahoney -
2019 Poster: ANODEV2: A Coupled Neural ODE Framework »
Tianjun Zhang · Zhewei Yao · Amir Gholami · Joseph Gonzalez · Kurt Keutzer · Michael Mahoney · George Biros -
2019 Poster: Distributed estimation of the inverse Hessian by determinantal averaging »
Michal Derezinski · Michael Mahoney -
2019 Poster: Multi-source Domain Adaptation for Semantic Segmentation »
Sicheng Zhao · Bo Li · Xiangyu Yue · Yang Gu · Pengfei Xu · Runbo Hu · Hua Chai · Kurt Keutzer -
2018 : Adversarial Vision Challenge: Theory-inspired Approaches for Adversarial Machine Learning »
susu xu · Yaodong Yu -
2018 : Prof. Kurt Keutzer »
Kurt Keutzer -
2018 Poster: GIANT: Globally Improved Approximate Newton Method for Distributed Optimization »
Shusen Wang · Fred Roosta · Peng Xu · Michael Mahoney -
2018 Poster: Third-order Smoothness Helps: Faster Stochastic Optimization Algorithms for Finding Local Minima »
Yaodong Yu · Pan Xu · Quanquan Gu -
2018 Poster: Hessian-based Analysis of Large Batch Training and Robustness to Adversaries »
Zhewei Yao · Amir Gholami · Qi Lei · Kurt Keutzer · Michael Mahoney -
2017 : Posters and Coffee »
Jean-Baptiste Tristan · Yunseong Lee · Anna Veronika Dorogush · Shohei Hido · Michael Terry · Mennatullah Siam · Hidemoto Nakada · Cody Coleman · Jung-Woo Ha · Hao Zhang · Adam Stooke · Chen Meng · Christopher Kappler · Lane Schwartz · Christopher Olston · Sebastian Schelter · Minmin Sun · Daniel Kang · Waldemar Hummer · Jichan Chung · Tim Kraska · Kannan Ramchandran · Nick Hynes · Christoph Boden · Donghyun Kwak -
2017 Poster: Union of Intersections (UoI) for Interpretable Data Driven Discovery and Prediction »
Kristofer Bouchard · Alejandro Bujan · Farbod Roosta-Khorasani · Shashanka Ubaru · Mr. Prabhat · Antoine Snijders · Jian-Hua Mao · Edward Chang · Michael W Mahoney · Sharmodeep Bhattacharya -
2016 : Kurt Keutzer: High-Performance Deep Learning »
Kurt Keutzer -
2016 Poster: Cyclades: Conflict-free Asynchronous Machine Learning »
Xinghao Pan · Maximilian Lam · Stephen Tu · Dimitris Papailiopoulos · Ce Zhang · Michael Jordan · Kannan Ramchandran · Christopher Ré · Benjamin Recht -
2016 Poster: Feature-distributed sparse regression: a screen-and-clean approach »
Jiyan Yang · Michael Mahoney · Michael Saunders · Yuekai Sun -
2016 Poster: Sub-sampled Newton Methods with Non-uniform Sampling »
Peng Xu · Jiyan Yang · Farbod Roosta-Khorasani · Christopher Ré · Michael Mahoney -
2015 : Challenges in Multiresolution Methods for Graph-based Learning »
Michael Mahoney -
2015 : Using Local Spectral Methods in Theory and in Practice »
Michael Mahoney -
2015 Poster: Parallel Correlation Clustering on Big Graphs »
Xinghao Pan · Dimitris Papailiopoulos · Samet Oymak · Benjamin Recht · Kannan Ramchandran · Michael Jordan -
2015 Poster: Fast Randomized Kernel Ridge Regression with Statistical Guarantees »
Ahmed Alaoui · Michael Mahoney -
2013 Workshop: Large Scale Matrix Analysis and Inference »
Reza Zadeh · Gunnar Carlsson · Michael Mahoney · Manfred K. Warmuth · Wouter M Koolen · Nati Srebro · Satyen Kale · Malik Magdon-Ismail · Ashish Goel · Matei A Zaharia · David Woodruff · Ioannis Koutis · Benjamin Recht -
2012 Poster: Semi-supervised Eigenvectors for Locally-biased Learning »
Toke Jansen Hansen · Michael W Mahoney -
2011 Workshop: Sparse Representation and Low-rank Approximation »
Ameet S Talwalkar · Lester W Mackey · Mehryar Mohri · Michael W Mahoney · Francis Bach · Mike Davies · Remi Gribonval · Guillaume R Obozinski -
2011 Poster: Regularized Laplacian Estimation and Fast Eigenvector Approximation »
Patrick O Perry · Michael W Mahoney -
2010 Workshop: Low-rank Methods for Large-scale Machine Learning »
Arthur Gretton · Michael W Mahoney · Mehryar Mohri · Ameet S Talwalkar -
2010 Poster: CUR from a Sparse Optimization Viewpoint »
Jacob Bien · Ya Xu · Michael W Mahoney -
2009 Poster: Unsupervised Feature Selection for the $k$-means Clustering Problem »
Christos Boutsidis · Michael W Mahoney · Petros Drineas