Timezone: »
Generative adversarial nets (GANs) have become a preferred tool for tasks involving complicated distributions. To stabilise the training and reduce the mode collapse of GANs, one of their main variants employs the integral probability metric (IPM) as the loss function. This provides extensive IPM-GANs with theoretical support for basically comparing moments in an embedded domain of the \textit{critic}. We generalise this by comparing the distributions rather than their moments via a powerful tool, i.e., the characteristic function (CF), which uniquely and universally comprising all the information about a distribution. For rigour, we first establish the physical meaning of the phase and amplitude in CF, and show that this provides a feasible way of balancing the accuracy and diversity of generation. We then develop an efficient sampling strategy to calculate the CFs. Within this framework, we further prove an equivalence between the embedded and data domains when a reciprocal exists, where we naturally develop the GAN in an auto-encoder structure, in a way of comparing everything in the embedded space (a semantically meaningful manifold). This efficient structure uses only two modules, together with a simple training strategy, to achieve bi-directionally generating clear images, which is referred to as the reciprocal CF GAN (RCF-GAN). Experimental results demonstrate the superior performances of the proposed RCF-GAN in terms of both generation and reconstruction.
Author Information
Shengxi Li (Imperial College London)
Zeyang Yu (Imperial College London)
Min Xiang (Imperial College London)
Danilo Mandic (Imperial College London)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Spotlight: Reciprocal Adversarial Learning via Characteristic Functions »
Fri. Dec 11th 03:30 -- 03:40 AM Room Orals & Spotlights: Neuroscience/Probabilistic
More from the Same Authors
-
2021 : Bayesian Tensor Networks »
Kriton Konstantinidis · Yao Lei Xu · Qibin Zhao · Danilo Mandic -
2021 : A Tensorized Spectral Attention Mechanism for Efficient Natural Language Processing »
Yao Lei Xu · Kriton Konstantinidis · Shengxi Li · Danilo Mandic -
2022 Spotlight: Lightning Talks 4B-4 »
Ziyue Jiang · Zeeshan Khan · Yuxiang Yang · Chenze Shao · Yichong Leng · Zehao Yu · Wenguan Wang · Xian Liu · Zehua Chen · Yang Feng · Qianyi Wu · James Liang · C.V. Jawahar · Junjie Yang · Zhe Su · Songyou Peng · Yufei Xu · Junliang Guo · Michael Niemeyer · Hang Zhou · Zhou Zhao · Makarand Tapaswi · Dongfang Liu · Qian Yang · Torsten Sattler · Yuanqi Du · Haohe Liu · Jing Zhang · Andreas Geiger · Yi Ren · Long Lan · Jiawei Chen · Wayne Wu · Dahua Lin · Dacheng Tao · Xu Tan · Jinglin Liu · Ziwei Liu · 振辉 叶 · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2022 Spotlight: BinauralGrad: A Two-Stage Conditional Diffusion Probabilistic Model for Binaural Audio Synthesis »
Yichong Leng · Zehua Chen · Junliang Guo · Haohe Liu · Jiawei Chen · Xu Tan · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2022 Poster: BinauralGrad: A Two-Stage Conditional Diffusion Probabilistic Model for Binaural Audio Synthesis »
Yichong Leng · Zehua Chen · Junliang Guo · Haohe Liu · Jiawei Chen · Xu Tan · Danilo Mandic · Lei He · Xiangyang Li · Tao Qin · sheng zhao · Tie-Yan Liu -
2021 : A Tensorized Spectral Attention Mechanism for Efficient Natural Language Processing »
Yao Lei Xu · Kriton Konstantinidis · Shengxi Li · Danilo Mandic -
2021 : Bayesian Tensor Networks »
Kriton Konstantinidis · Yao Lei Xu · Qibin Zhao · Danilo Mandic -
2021 : Danilo P. Mandic »
Danilo Mandic -
2021 : Multi-graph Tensor Networks: Big Data Analytics on Irregular Domains »
Danilo Mandic -
2011 Poster: A Multilinear Subspace Regression Method Using Orthogonal Tensors Decompositions »
Qibin Zhao · Cesar F Caiafa · Danilo Mandic · Liqing Zhang · Tonio Ball · Andreas Schulze-bonhage · Andrzej S CICHOCKI -
2011 Spotlight: A Multilinear Subspace Regression Method Using Orthogonal Tensors Decompositions »
Qibin Zhao · Cesar F Caiafa · Danilo Mandic · Liqing Zhang · Tonio Ball · Andreas Schulze-bonhage · Andrzej S CICHOCKI