Timezone: »
Poster
Myersonian Regression
Allen Liu · Renato Leme · Jon Schneider
Motivated by pricing applications in online advertising, we study a variant of linear regression with a discontinuous loss function that we term Myersonian regression. In this variant, we wish to find a linear function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ that well approximates a set of points $(x_i, v_i) \in \mathbb{R}^d \times [0, 1]$ in the following sense: we receive a loss of $v_i$ when $f(x_i) > v_i$ and a loss of $v_i - f(x_i)$ when $f(x_i) \leq v_i$. This arises naturally in the economic application of designing a pricing policy for differentiated items (where the loss is the gap between the performance of our policy and the optimal Myerson prices).
We show that Myersonian regression is NP-hard to solve exactly and furthermore that no fully polynomial-time approximation scheme exists for Myersonian regression conditioned on the Exponential Time Hypothesis being true. In contrast to this, we demonstrate a polynomial-time approximation scheme for Myersonian regression that obtains an $\epsilon m$ additive approximation to the optimal possible revenue and can be computed in time $O(\exp(\mathrm{poly}(1/\epsilon))\poly(m, n))$. We show that this algorithm is stable and generalizes well over distributions of samples.
Author Information
Allen Liu (MIT)
Renato Leme (Google Research)
Jon Schneider (Google Research)
More from the Same Authors
-
2022 : Semi-Random Sparse Recovery in Nearly-Linear Time »
Jonathan Kelner · Jerry Li · Allen Liu · Aaron Sidford · Kevin Tian -
2023 Poster: A Constant-Factor Approximation for Individual Preference Stable Clustering »
Anders Aamand · Justin Chen · Allen Liu · Sandeep Silwal · Pattara Sukprasert · Ali Vakilian · Fred Zhang -
2022 : Poster Session 1 »
Andrew Lowy · Thomas Bonnier · Yiling Xie · Guy Kornowski · Simon Schug · Seungyub Han · Nicolas Loizou · xinwei zhang · Laurent Condat · Tabea E. Röber · Si Yi Meng · Marco Mondelli · Runlong Zhou · Eshaan Nichani · Adrian Goldwaser · Rudrajit Das · Kayhan Behdin · Atish Agarwala · Mukul Gagrani · Gary Cheng · Tian Li · Haoran Sun · Hossein Taheri · Allen Liu · Siqi Zhang · Dmitrii Avdiukhin · Bradley Brown · Miaolan Xie · Junhyung Lyle Kim · Sharan Vaswani · Xinmeng Huang · Ganesh Ramachandra Kini · Angela Yuan · Weiqiang Zheng · Jiajin Li -
2022 Poster: Robust Model Selection and Nearly-Proper Learning for GMMs »
Allen Liu · Jerry Li · Ankur Moitra -
2021 Poster: Contextual Recommendations and Low-Regret Cutting-Plane Algorithms »
Sreenivas Gollapudi · Guru Guruganesh · Kostas Kollias · Pasin Manurangsi · Renato Leme · Jon Schneider -
2021 Poster: Margin-Independent Online Multiclass Learning via Convex Geometry »
Guru Guruganesh · Allen Liu · Jon Schneider · Joshua Wang -
2020 Poster: Tensor Completion Made Practical »
Allen Liu · Ankur Moitra -
2019 Poster: Prior-Free Dynamic Auctions with Low Regret Buyers »
Yuan Deng · Jon Schneider · Balasubramanian Sivan -
2019 Poster: Contextual Bandits with Cross-Learning »
Santiago Balseiro · Negin Golrezaei · Mohammad Mahdian · Vahab Mirrokni · Jon Schneider -
2019 Poster: Strategizing against No-regret Learners »
Yuan Deng · Jon Schneider · Balasubramanian Sivan -
2019 Poster: Secretary Ranking with Minimal Inversions »
Sepehr Assadi · Eric Balkanski · Renato Leme -
2019 Oral: Strategizing against No-regret Learners »
Yuan Deng · Jon Schneider · Balasubramanian Sivan -
2018 Poster: Contextual Pricing for Lipschitz Buyers »
Jieming Mao · Renato Leme · Jon Schneider -
2017 Poster: Dynamic Revenue Sharing »
Santiago Balseiro · Max Lin · Vahab Mirrokni · Renato Leme · IIIS Song Zuo