Timezone: »

Myersonian Regression
Allen Liu · Renato Leme · Jon Schneider

Tue Dec 08 09:00 AM -- 11:00 AM (PST) @ Poster Session 1 #335
Motivated by pricing applications in online advertising, we study a variant of linear regression with a discontinuous loss function that we term Myersonian regression. In this variant, we wish to find a linear function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ that well approximates a set of points $(x_i, v_i) \in \mathbb{R}^d \times [0, 1]$ in the following sense: we receive a loss of $v_i$ when $f(x_i) > v_i$ and a loss of $v_i - f(x_i)$ when $f(x_i) \leq v_i$. This arises naturally in the economic application of designing a pricing policy for differentiated items (where the loss is the gap between the performance of our policy and the optimal Myerson prices). We show that Myersonian regression is NP-hard to solve exactly and furthermore that no fully polynomial-time approximation scheme exists for Myersonian regression conditioned on the Exponential Time Hypothesis being true. In contrast to this, we demonstrate a polynomial-time approximation scheme for Myersonian regression that obtains an $\epsilon m$ additive approximation to the optimal possible revenue and can be computed in time $O(\exp(\mathrm{poly}(1/\epsilon))\poly(m, n))$. We show that this algorithm is stable and generalizes well over distributions of samples.

Author Information

Allen Liu (MIT)
Renato Leme (Google Research)
Jon Schneider (Google Research)

More from the Same Authors