Timezone: »
Real-world networks, especially the ones that emerge due to actions of animate agents (e.g. humans, animals), are the result of underlying strategic mechanisms aimed at maximizing individual or collective benefits. Learning approaches built to capture these strategic insights would gain interpretability and flexibility benefits that are required to generalize beyond observations. To this end, we consider a game-theoretic formalism of network emergence that accounts for the underlying strategic mechanisms and take it to the observed data. We propose MINE (Multi-agent Inverse models of Network Emergence mechanism), a new learning framework that solves Markov-Perfect network emergence games using multi-agent inverse reinforcement learning. MINE jointly discovers agents' strategy profiles in the form of network emergence policy and the latent payoff mechanism in the form of learned reward function. In the experiments, we demonstrate that MINE learns versatile payoff mechanisms that: highly correlates with the ground truth for a synthetic case; can be used to analyze the observed network structure; and enable effective transfer in specific settings. Further, we show that the network emergence game as a learned model supports meaningful strategic predictions, thereby signifying its applicability to a variety of network analysis tasks.
Author Information
Rakshit Trivedi (Georgia Institute of Technology)
Hongyuan Zha (Georgia Tech)
More from the Same Authors
-
2021 Poster: Bridging Explicit and Implicit Deep Generative Models via Neural Stein Estimators »
Qitian Wu · Rui Gao · Hongyuan Zha -
2021 Poster: Random Noise Defense Against Query-Based Black-Box Attacks »
Zeyu Qin · Yanbo Fan · Hongyuan Zha · Baoyuan Wu -
2020 Poster: Learning to Incentivize Other Learning Agents »
Jiachen Yang · Ang Li · Mehrdad Farajtabar · Peter Sunehag · Edward Hughes · Hongyuan Zha -
2020 Poster: Network Diffusions via Neural Mean-Field Dynamics »
Shushan He · Hongyuan Zha · Xiaojing Ye -
2020 Poster: Differentiable Top-k with Optimal Transport »
Yujia Xie · Hanjun Dai · Minshuo Chen · Bo Dai · Tuo Zhao · Hongyuan Zha · Wei Wei · Tomas Pfister -
2019 Workshop: Learning with Temporal Point Processes »
Manuel Rodriguez · Le Song · Isabel Valera · Yan Liu · Abir De · Hongyuan Zha -
2019 : Posters »
Colin Graber · Yuan-Ting Hu · Tiantian Fang · Jessica Hamrick · Giorgio Giannone · John Co-Reyes · Boyang Deng · Eric Crawford · Andrea Dittadi · Peter Karkus · Matthew Dirks · Rakshit Trivedi · Sunny Raj · Javier Felip Leon · Harris Chan · Jan Chorowski · Jeff Orchard · Aleksandar Stanić · Adam Kortylewski · Ben Zinberg · Chenghui Zhou · Wei Sun · Vikash Mansinghka · Chun-Liang Li · Marco Cusumano-Towner -
2019 Poster: Meta Learning with Relational Information for Short Sequences »
Yujia Xie · Haoming Jiang · Feng Liu · Tuo Zhao · Hongyuan Zha -
2018 : Spotlight talks (session 5) »
Alexis Asseman · Roman Marchant · Rakshit Trivedi · Balakrishnan Narayanaswamy · Massinissa AMROUCHE · Henry Martin · Nelson FERNANDEZ PINTO -
2017 Poster: A Dirichlet Mixture Model of Hawkes Processes for Event Sequence Clustering »
Hongteng Xu · Hongyuan Zha -
2017 Poster: Predicting User Activity Level In Point Processes With Mass Transport Equation »
Yichen Wang · Xiaojing Ye · Hongyuan Zha · Le Song -
2017 Poster: Wasserstein Learning of Deep Generative Point Process Models »
Shuai Xiao · Mehrdad Farajtabar · Xiaojing Ye · Junchi Yan · Xiaokang Yang · Le Song · Hongyuan Zha -
2016 Poster: Multistage Campaigning in Social Networks »
Mehrdad Farajtabar · Xiaojing Ye · Sahar Harati · Le Song · Hongyuan Zha -
2015 Poster: COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution »
Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song -
2015 Oral: COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution »
Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song -
2014 Poster: Shaping Social Activity by Incentivizing Users »
Mehrdad Farajtabar · Nan Du · Manuel Gomez Rodriguez · Isabel Valera · Hongyuan Zha · Le Song -
2013 Poster: Scalable Influence Estimation in Continuous-Time Diffusion Networks »
Nan Du · Le Song · Manuel Gomez Rodriguez · Hongyuan Zha -
2013 Oral: Scalable Influence Estimation in Continuous-Time Diffusion Networks »
Nan Du · Le Song · Manuel Gomez Rodriguez · Hongyuan Zha -
2009 Poster: Dirichlet-Bernoulli Alignment: A Generative Model for Multi-Class Multi-Label Multi-Instance Corpora »
Shuang Yang · Hongyuan Zha · Bao-Gang Hu -
2008 Poster: Convergence and Rate of Convergence of A Manifold-Based Dimension Reduction »
Andrew Smith · Xiaoming Huo · Hongyuan Zha -
2007 Poster: A General Boosting Method and its Application to Learning Ranking Functions for Web Search »
Zhaohui Zheng · Hongyuan Zha · Tong Zhang · Olivier Chapelle · Keke Chen · Gordon Sun