Timezone: »
Causal effect estimation relies on separating the variation in the outcome into parts due to the treatment and due to the confounders. To achieve this separation, practitioners often use external sources of randomness that only influence the treatment called instrumental variables (IVs). We study variables constructed from treatment and IV that help estimate effects, called control functions. We characterize general control functions for effect estimation in a meta-identification result. Then, we show that structural assumptions on the treatment process allow the construction of general control functions, thereby guaranteeing identification. To construct general control functions and estimate effects, we develop the general control function method (GCFN). GCFN’s first stage called variational decoupling (VDE) constructs general control functions by recovering the residual variation in the treatment given the IV. Using VDE’s control function, GCFN’s second stage estimates effects via regression. Further, we develop semi-supervised GCFN to construct general control functions using subsets of data that have both IV and confounders observed as supervision; this needs no structural treatment process assumptions. We evaluate GCFN on low and high dimensional simulated data and on recovering the causal effect of slave export on modern community trust [30]
Author Information
Aahlad Puli (NYU)
Rajesh Ranganath (New York University)
More from the Same Authors
-
2021 Spotlight: Offline RL Without Off-Policy Evaluation »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2021 : Learning Invariant Representations with Missing Data »
Mark Goldstein · Adriel Saporta · Aahlad Puli · Rajesh Ranganath · Andrew Miller -
2021 : Learning to Accelerate MR Screenings »
Raghav Singhal · Mukund Sudarshan · Angela Tong · Daniel Sodickson · Rajesh Ranganath -
2021 : Individual treatment effect estimation in the presence of unobserved confounding based on a fixed relative treatment effect »
Wouter van Amsterdam · Rajesh Ranganath -
2021 : Quantile Filtered Imitation Learning »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2021 Poster: Inverse-Weighted Survival Games »
Xintian Han · Mark Goldstein · Aahlad Puli · Thomas Wies · Adler Perotte · Rajesh Ranganath -
2021 Poster: Offline RL Without Off-Policy Evaluation »
David Brandfonbrener · Will Whitney · Rajesh Ranganath · Joan Bruna -
2020 Poster: Deep Direct Likelihood Knockoffs »
Mukund Sudarshan · Wesley Tansey · Rajesh Ranganath -
2020 Poster: X-CAL: Explicit Calibration for Survival Analysis »
Mark Goldstein · Xintian Han · Aahlad Puli · Adler Perotte · Rajesh Ranganath -
2020 Poster: Causal Estimation with Functional Confounders »
Aahlad Puli · Adler Perotte · Rajesh Ranganath -
2019 : Coffee break, posters, and 1-on-1 discussions »
Julius von Kügelgen · David Rohde · Candice Schumann · Grace Charles · Victor Veitch · Vira Semenova · Mert Demirer · Vasilis Syrgkanis · Suraj Nair · Aahlad Puli · Masatoshi Uehara · Aditya Gopalan · Yi Ding · Ignavier Ng · Khashayar Khosravi · Eli Sherman · Shuxi Zeng · Aleksander Wieczorek · Hao Liu · Kyra Gan · Jason Hartford · Miruna Oprescu · Alexander D'Amour · Jörn Boehnke · Yuta Saito · Théophile Griveau-Billion · Chirag Modi · Shyngys Karimov · Jeroen Berrevoets · Logan Graham · Imke Mayer · Dhanya Sridhar · Issa Dahabreh · Alan Mishler · Duncan Wadsworth · Khizar Qureshi · Rahul Ladhania · Gota Morishita · Paul Welle -
2019 Poster: Energy-Inspired Models: Learning with Sampler-Induced Distributions »
John Lawson · George Tucker · Bo Dai · Rajesh Ranganath -
2018 Poster: Removing Hidden Confounding by Experimental Grounding »
Nathan Kallus · Aahlad Puli · Uri Shalit -
2018 Spotlight: Removing Hidden Confounding by Experimental Grounding »
Nathan Kallus · Aahlad Puli · Uri Shalit