Timezone: »
The paradigm of pretraining' from a set of relevant auxiliary tasks and then
finetuning' on a target task has been successfully applied in many different domains. However, when the auxiliary tasks are abundant, with complex relationships to the target task, using domain knowledge or searching over all possible pretraining setups are inefficient strategies. To address this challenge, we propose a method to automatically select from a large set of auxiliary tasks which yield a representation most useful to the target task. In particular, we develop an efficient algorithm that uses automatic auxiliary task selection within a nested-loop meta-learning process. We have applied this algorithm to the task of clinical outcome predictions in electronic medical records, learning from a large number of self-supervised tasks related to forecasting patient trajectories. Experiments on a real clinical dataset demonstrate the superior predictive performance of our method compared to direct supervised learning, naive pretraining and multitask learning, in particular in low-data scenarios when the primary task has very few examples. With detailed ablation analysis, we further show that the selection rules are interpretable and able to generalize to unseen target tasks with new data.
Author Information
Yuan Xue (Google)
Nan Du (Google Brain)
Anne Mottram (DeepMind)
Martin Seneviratne (Google Health)
Andrew Dai (Google)
More from the Same Authors
-
2021 : BEDS-Bench: Behavior of EHR-models under Distributional Shift - A Benchmark »
Anand Avati · Martin Seneviratne · Yuan Xue · Zhen Xu · Balaji Lakshminarayanan · Andrew Dai -
2022 Poster: Mixture-of-Experts with Expert Choice Routing »
Yanqi Zhou · Tao Lei · Hanxiao Liu · Nan Du · Yanping Huang · Vincent Zhao · Andrew Dai · zhifeng Chen · Quoc V Le · James Laudon -
2019 : Poster Session »
Ayse Cakmak · Yunkai Zhang · Srijith Prabhakarannair Kusumam · Mohamed Osama Ahmed · Xintao Wu · Jayesh Choudhari · David I Inouye · Thomas Taylor · Michel Besserve · Ali Caner Turkmen · Kazi Islam · Antonio Artés · Amrith Setlur · Zhanghua Fu · Zhen Han · Abir De · Nan Du · Pablo Sanchez-Martin -
2019 : Poster Session I »
Shuangjia Zheng · Arnav Kapur · Umar Asif · Eyal Rozenberg · Cyprien Gilet · Oleksii Sidorov · Yogesh Kumar · Tom Van Steenkiste · William Boag · David Ouyang · Paul Jaeger · Sheng Liu · Aparna Balagopalan · Deepta Rajan · Marta Skreta · Nikhil Pattisapu · Jann Goschenhofer · Viraj Prabhu · Di Jin · Laura-Jayne Gardiner · Irene Li · sriram kumar · Qiyuan Hu · Mehul Motani · Justin Lovelace · Usman Roshan · Lucy Lu Wang · Ilya Valmianski · Hyeonwoo Lee · Sunil Mallya · Elias Chaibub Neto · Jonas Kemp · Marie Charpignon · Amber Nigam · Wei-Hung Weng · Sabri Boughorbel · Alexis Bellot · Lovedeep Gondara · Haoran Zhang · Taha Bahadori · John Zech · Rulin Shao · Edward Choi · Laleh Seyyed-Kalantari · Emily Aiken · Ioana Bica · Yiqiu Shen · Kieran Chin-Cheong · Subhrajit Roy · Ioana Baldini · So Yeon Min · Dirk Deschrijver · Pekka Marttinen · Damian Pascual Ortiz · Supriya Nagesh · Niklas Rindtorff · Andriy Mulyar · Katharina Hoebel · Martha Shaka · Pierre Machart · Leon Gatys · Nathan Ng · Matthias Hüser · Devin Taylor · Dennis Barbour · Natalia Martinez · Clara McCreery · Benjamin Eyre · Vivek Natarajan · Ren Yi · Ruibin Ma · Chirag Nagpal · Nan Du · Chufan Gao · Anup Tuladhar · Sam Shleifer · Jason Ren · Pouria Mashouri · Ming Yang Lu · Farideh Bagherzadeh-Khiabani · Olivia Choudhury · Maithra Raghu · Scott Fleming · Mika Jain · GUO YANG · Alena Harley · Stephen Pfohl · Elisabeth Rumetshofer · Alex Fedorov · Saloni Dash · Jacob Pfau · Sabina Tomkins · Colin Targonski · Michael Brudno · Xinyu Li · Yiyang Yu · Nisarg Patel -
2018 Poster: Learning Temporal Point Processes via Reinforcement Learning »
Shuang Li · Shuai Xiao · Shixiang Zhu · Nan Du · Yao Xie · Le Song -
2018 Spotlight: Learning Temporal Point Processes via Reinforcement Learning »
Shuang Li · Shuai Xiao · Shixiang Zhu · Nan Du · Yao Xie · Le Song -
2015 Poster: Semi-supervised Sequence Learning »
Andrew Dai · Quoc V Le