`

Timezone: »

 
Poster
Markovian Score Climbing: Variational Inference with KL(p||q)
Christian Naesseth · Fredrik Lindsten · David Blei

Thu Dec 10 09:00 AM -- 11:00 AM (PST) @ Poster Session 5 #1481

Modern variational inference (VI) uses stochastic gradients to avoid intractable expectations, enabling large-scale probabilistic inference in complex models. VI posits a family of approximating distributions q and then finds the member of that family that is closest to the exact posterior p. Traditionally, VI algorithms minimize the “exclusive Kullback-Leibler (KL)” KL(q||p), often for computational convenience. Recent research, however, has also focused on the “inclusive KL” KL(p||q), which has good statistical properties that makes it more appropriate for certain inference problems. This paper develops a simple algorithm for reliably minimizing the inclusive KL using stochastic gradients with vanishing bias. This method, which we call Markovian score climbing (MSC), converges to a local optimum of the inclusive KL. It does not suffer from the systematic errors inherent in existing methods, such as Reweighted Wake-Sleep and Neural Adaptive Sequential Monte Carlo, which lead to bias in their final estimates. We illustrate convergence on a toy model and demonstrate the utility of MSC on Bayesian probit regression for classification as well as a stochastic volatility model for financial data.

Author Information

Christian Naesseth (Columbia University)
Fredrik Lindsten (Linköping University)
David Blei (Columbia University)

David Blei is a Professor of Statistics and Computer Science at Columbia University, and a member of the Columbia Data Science Institute. His research is in statistical machine learning, involving probabilistic topic models, Bayesian nonparametric methods, and approximate posterior inference algorithms for massive data. He works on a variety of applications, including text, images, music, social networks, user behavior, and scientific data. David has received several awards for his research, including a Sloan Fellowship (2010), Office of Naval Research Young Investigator Award (2011), Presidential Early Career Award for Scientists and Engineers (2011), Blavatnik Faculty Award (2013), and ACM-Infosys Foundation Award (2013). He is a fellow of the ACM.

More from the Same Authors