Timezone: »
Poster
Convergence of Meta-Learning with Task-Specific Adaptation over Partial Parameters
Kaiyi Ji · Jason Lee · Yingbin Liang · H. Vincent Poor
Although model-agnostic meta-learning (MAML) is a very successful algorithm in meta-learning practice, it can have high computational cost because it updates all model parameters over both the inner loop of task-specific adaptation and the outer-loop of meta initialization training. A more efficient algorithm ANIL (which refers to almost no inner loop) was proposed recently by Raghu et al. 2019, which adapts only a small subset of parameters in the inner loop and thus has substantially less computational cost than MAML as demonstrated by extensive experiments. However, the theoretical convergence of ANIL has not been studied yet. In this paper, we characterize the convergence rate and the computational complexity for ANIL under two representative inner-loop loss geometries, i.e., strongly-convexity and nonconvexity. Our results show that such a geometric property can significantly affect the overall convergence performance of ANIL. For example, ANIL achieves a faster convergence rate for a strongly-convex inner-loop loss as the number $N$ of inner-loop gradient descent steps increases, but a slower convergence rate for a nonconvex inner-loop loss as $N$ increases. Moreover, our complexity analysis provides a theoretical quantification on the improved efficiency of ANIL over MAML. The experiments on standard few-shot meta-learning benchmarks validate our theoretical findings.
Author Information
Kaiyi Ji (The Ohio State University)
Jason Lee (Princeton University)
Yingbin Liang (The Ohio State University)
H. Vincent Poor (Princeton University)
More from the Same Authors
-
2021 Spotlight: Provably Faster Algorithms for Bilevel Optimization »
Junjie Yang · Kaiyi Ji · Yingbin Liang -
2022 Poster: Provable Generalization of Overparameterized Meta-learning Trained with SGD »
Yu Huang · Yingbin Liang · Longbo Huang -
2022 : Online Min-max Optimization: Nonconvexity, Nonstationarity, and Dynamic Regret »
Yu Huang · Yuan Cheng · Yingbin Liang · Longbo Huang -
2023 : Provable Feature Learning in Gradient Descent, Jason Lee »
Jason Lee -
2022 Spotlight: Will Bilevel Optimizers Benefit from Loops »
Kaiyi Ji · Mingrui Liu · Yingbin Liang · Lei Ying -
2022 Spotlight: Lightning Talks 3B-2 »
Yu Huang · Tero Karras · Maxim Kodryan · Shiau Hong Lim · Shudong Huang · Ziyu Wang · Siqiao Xue · ILYAS MALIK · Ekaterina Lobacheva · Miika Aittala · Hongjie Wu · Yuhao Zhou · Yingbin Liang · Xiaoming Shi · Jun Zhu · Maksim Nakhodnov · Timo Aila · Yazhou Ren · James Zhang · Longbo Huang · Dmitry Vetrov · Ivor Tsang · Hongyuan Mei · Samuli Laine · Zenglin Xu · Wentao Feng · Jiancheng Lv -
2022 Spotlight: Provable Generalization of Overparameterized Meta-learning Trained with SGD »
Yu Huang · Yingbin Liang · Longbo Huang -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: Provable Benefit of Multitask Representation Learning in Reinforcement Learning »
Yuan Cheng · Songtao Feng · Jing Yang · Hong Zhang · Yingbin Liang -
2022 Poster: Time-Conditioned Dances with Simplicial Complexes: Zigzag Filtration Curve based Supra-Hodge Convolution Networks for Time-series Forecasting »
Yuzhou Chen · Yulia Gel · H. Vincent Poor -
2022 Poster: A Unifying Framework of Off-Policy General Value Function Evaluation »
Tengyu Xu · Zhuoran Yang · Zhaoran Wang · Yingbin Liang -
2022 Poster: On the Convergence Theory for Hessian-Free Bilevel Algorithms »
Daouda Sow · Kaiyi Ji · Yingbin Liang -
2022 Poster: Provable Benefit of Multitask Representation Learning in Reinforcement Learning »
Yuan Cheng · Songtao Feng · Jing Yang · Hong Zhang · Yingbin Liang -
2022 Poster: Will Bilevel Optimizers Benefit from Loops »
Kaiyi Ji · Mingrui Liu · Yingbin Liang · Lei Ying -
2021 : Invited talk 7 »
Jason Lee -
2021 Poster: Faster Non-asymptotic Convergence for Double Q-learning »
Lin Zhao · Huaqing Xiong · Yingbin Liang -
2021 Poster: Provably Faster Algorithms for Bilevel Optimization »
Junjie Yang · Kaiyi Ji · Yingbin Liang -
2020 Poster: Generalized Leverage Score Sampling for Neural Networks »
Jason Lee · Ruoqi Shen · Zhao Song · Mengdi Wang · zheng Yu -
2020 Poster: Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization »
Jianyu Wang · Qinghua Liu · Hao Liang · Gauri Joshi · H. Vincent Poor -
2020 Poster: Beyond Lazy Training for Over-parameterized Tensor Decomposition »
Xiang Wang · Chenwei Wu · Jason Lee · Tengyu Ma · Rong Ge -
2020 Poster: Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy »
Edward Moroshko · Blake Woodworth · Suriya Gunasekar · Jason Lee · Nati Srebro · Daniel Soudry -
2020 Spotlight: Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy »
Edward Moroshko · Blake Woodworth · Suriya Gunasekar · Jason Lee · Nati Srebro · Daniel Soudry -
2020 Poster: Sanity-Checking Pruning Methods: Random Tickets can Win the Jackpot »
Jingtong Su · Yihang Chen · Tianle Cai · Tianhao Wu · Ruiqi Gao · Liwei Wang · Jason Lee -
2020 Poster: Agnostic $Q$-learning with Function Approximation in Deterministic Systems: Near-Optimal Bounds on Approximation Error and Sample Complexity »
Simon Du · Jason Lee · Gaurav Mahajan · Ruosong Wang -
2020 Poster: Improving Sample Complexity Bounds for (Natural) Actor-Critic Algorithms »
Tengyu Xu · Zhe Wang · Yingbin Liang -
2020 Poster: Finite-Time Analysis for Double Q-learning »
Huaqing Xiong · Lin Zhao · Yingbin Liang · Wei Zhang -
2020 Poster: Towards Understanding Hierarchical Learning: Benefits of Neural Representations »
Minshuo Chen · Yu Bai · Jason Lee · Tuo Zhao · Huan Wang · Caiming Xiong · Richard Socher -
2020 Spotlight: Finite-Time Analysis for Double Q-learning »
Huaqing Xiong · Lin Zhao · Yingbin Liang · Wei Zhang -
2020 Poster: How to Characterize The Landscape of Overparameterized Convolutional Neural Networks »
Yihong Gu · Weizhong Zhang · Cong Fang · Jason Lee · Tong Zhang -
2019 Poster: Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel »
Colin Wei · Jason Lee · Qiang Liu · Tengyu Ma -
2019 Spotlight: Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel »
Colin Wei · Jason Lee · Qiang Liu · Tengyu Ma -
2019 Poster: Solving a Class of Non-Convex Min-Max Games Using Iterative First Order Methods »
Maher Nouiehed · Maziar Sanjabi · Tianjian Huang · Jason Lee · Meisam Razaviyayn -
2019 Poster: Convergence of Adversarial Training in Overparametrized Neural Networks »
Ruiqi Gao · Tianle Cai · Haochuan Li · Cho-Jui Hsieh · Liwei Wang · Jason Lee -
2019 Spotlight: Convergence of Adversarial Training in Overparametrized Neural Networks »
Ruiqi Gao · Tianle Cai · Haochuan Li · Cho-Jui Hsieh · Liwei Wang · Jason Lee -
2019 Poster: Neural Temporal-Difference Learning Converges to Global Optima »
Qi Cai · Zhuoran Yang · Jason Lee · Zhaoran Wang -
2019 Poster: Nonconvex Low-Rank Symmetric Tensor Completion from Noisy Data »
Changxiao Cai · Gen Li · H. Vincent Poor · Yuxin Chen -
2019 Poster: SpiderBoost and Momentum: Faster Variance Reduction Algorithms »
Zhe Wang · Kaiyi Ji · Yi Zhou · Yingbin Liang · Vahid Tarokh -
2019 Poster: Finite-Sample Analysis for SARSA with Linear Function Approximation »
Shaofeng Zou · Tengyu Xu · Yingbin Liang -
2019 Poster: Two Time-scale Off-Policy TD Learning: Non-asymptotic Analysis over Markovian Samples »
Tengyu Xu · Shaofeng Zou · Yingbin Liang -
2018 Poster: Convergence of Cubic Regularization for Nonconvex Optimization under KL Property »
Yi Zhou · Zhe Wang · Yingbin Liang -
2018 Spotlight: Convergence of Cubic Regularization for Nonconvex Optimization under KL Property »
Yi Zhou · Zhe Wang · Yingbin Liang -
2018 Poster: Minimax Estimation of Neural Net Distance »
Kaiyi Ji · Yingbin Liang