Timezone: »
In suitably initialized wide networks, small learning rates transform deep neural networks (DNNs) into neural tangent kernel (NTK) machines, whose training dynamics is well-approximated by a linear weight expansion of the network at initialization. Standard training, however, diverges from its linearization in ways that are poorly understood. We study the relationship between the training dynamics of nonlinear deep networks, the geometry of the loss landscape, and the time evolution of a data-dependent NTK. We do so through a large-scale phenomenological analysis of training, synthesizing diverse measures characterizing loss landscape geometry and NTK dynamics. In multiple neural architectures and datasets, we find these diverse measures evolve in a highly correlated manner, revealing a universal picture of the deep learning process. In this picture, deep network training exhibits a highly chaotic rapid initial transient that within 2 to 3 epochs determines the final linearly connected basin of low loss containing the end point of training. During this chaotic transient, the NTK changes rapidly, learning useful features from the training data that enables it to outperform the standard initial NTK by a factor of 3 in less than 3 to 4 epochs. After this rapid chaotic transient, the NTK changes at constant velocity, and its performance matches that of full network training in 15\% to 45\% of training time. Overall, our analysis reveals a striking correlation between a diverse set of metrics over training time, governed by a rapid chaotic to stable transition in the first few epochs, that together poses challenges and opportunities for the development of more accurate theories of deep learning.
Author Information
Stanislav Fort (Stanford University / Google Research)
Gintare Karolina Dziugaite (Element AI)
Mansheej Paul (Stanford University)
Sepideh Kharaghani (Element AI)
Daniel Roy (Univ of Toronto & Vector)
Surya Ganguli (Stanford)
More from the Same Authors
-
2021 Spotlight: Towards a Unified Information-Theoretic Framework for Generalization »
Mahdi Haghifam · Gintare Karolina Dziugaite · Shay Moran · Dan Roy -
2021 : Stochastic Pruning: Fine-Tuning, and PAC-Bayes bound optimization »
Soufiane Hayou · Bobby He · Gintare Karolina Dziugaite -
2021 : The Dynamics of Functional Diversity throughout Neural Network Training »
Lee Zamparo · Marc-Etienne Brunet · Thomas George · Sepideh Kharaghani · Gintare Karolina Dziugaite -
2022 : Unmasking the Lottery Ticket Hypothesis: Efficient Adaptive Pruning for Finding Winning Tickets »
Mansheej Paul · Feng Chen · Brett Larsen · Jonathan Frankle · Surya Ganguli · Gintare Karolina Dziugaite -
2022 : The Effect of Data Dimensionality on Neural Network Prunability »
Zachary Ankner · Alex Renda · Gintare Karolina Dziugaite · Jonathan Frankle · Tian Jin -
2023 : Enhanced cue associated memory in temporally consistent recurrent neural networks »
Udith Haputhanthri · Liam Storan · Adam Shai · Surya Ganguli · Mark Schnitzer · Hidenori Tanaka · Fatih Dinc -
2023 Workshop: UniReps: Unifying Representations in Neural Models »
Marco Fumero · Emanuele Rodolà · Francesco Locatello · Gintare Karolina Dziugaite · Mathilde Caron -
2023 Poster: Stochastic Collapse: How Gradient Noise Attracts SGD Dynamics Towards Simpler Subnetworks »
Feng Chen · Daniel Kunin · Atsushi Yamamura · Surya Ganguli -
2023 Poster: Information Geometry of the Retinal Representation Manifold »
Xuehao Ding · Dongsoo Lee · Joshua Melander · George Sivulka · Surya Ganguli · Stephen Baccus -
2023 Poster: Pretraining task diversity and the emergence of non-Bayesian in-context learning for regression »
Allan Raventós · Mansheej Paul · Feng Chen · Surya Ganguli -
2022 : Invited Talk by Stanislav Fort »
Stanislav Fort -
2022 Poster: Lottery Tickets on a Data Diet: Finding Initializations with Sparse Trainable Networks »
Mansheej Paul · Brett Larsen · Surya Ganguli · Jonathan Frankle · Gintare Karolina Dziugaite -
2022 Poster: Beyond neural scaling laws: beating power law scaling via data pruning »
Ben Sorscher · Robert Geirhos · Shashank Shekhar · Surya Ganguli · Ari Morcos -
2022 Poster: Pruning’s Effect on Generalization Through the Lens of Training and Regularization »
Tian Jin · Michael Carbin · Dan Roy · Jonathan Frankle · Gintare Karolina Dziugaite -
2021 : Session 3 | Invited talk: Surya Ganguli, "From the geometry of high dimensional energy landscapes to optimal annealing in a dissipative many body quantum optimizer" »
Surya Ganguli · Atilim Gunes Baydin -
2021 Poster: Exploring the Limits of Out-of-Distribution Detection »
Stanislav Fort · Jie Ren · Balaji Lakshminarayanan -
2021 Poster: The future is log-Gaussian: ResNets and their infinite-depth-and-width limit at initialization »
Mufan Li · Mihai Nica · Dan Roy -
2021 Poster: Minimax Optimal Quantile and Semi-Adversarial Regret via Root-Logarithmic Regularizers »
Jeffrey Negrea · Blair Bilodeau · Nicolò Campolongo · Francesco Orabona · Dan Roy -
2021 Poster: Deep Learning on a Data Diet: Finding Important Examples Early in Training »
Mansheej Paul · Surya Ganguli · Gintare Karolina Dziugaite -
2021 Poster: Towards a Unified Information-Theoretic Framework for Generalization »
Mahdi Haghifam · Gintare Karolina Dziugaite · Shay Moran · Dan Roy -
2020 : Keynote 5: Gintare Karolina Dziugaite »
Gintare Karolina Dziugaite -
2020 Poster: Predictive coding in balanced neural networks with noise, chaos and delays »
Jonathan Kadmon · Jonathan Timcheck · Surya Ganguli -
2020 Poster: Identifying Learning Rules From Neural Network Observables »
Aran Nayebi · Sanjana Srivastava · Surya Ganguli · Daniel Yamins -
2020 Spotlight: Identifying Learning Rules From Neural Network Observables »
Aran Nayebi · Sanjana Srivastava · Surya Ganguli · Daniel Yamins -
2020 Poster: Adaptive Gradient Quantization for Data-Parallel SGD »
Fartash Faghri · Iman Tabrizian · Ilia Markov · Dan Alistarh · Daniel Roy · Ali Ramezani-Kebrya -
2020 Poster: Sharpened Generalization Bounds based on Conditional Mutual Information and an Application to Noisy, Iterative Algorithms »
Mahdi Haghifam · Jeffrey Negrea · Ashish Khisti · Daniel Roy · Gintare Karolina Dziugaite -
2020 Poster: In search of robust measures of generalization »
Gintare Karolina Dziugaite · Alexandre Drouin · Brady Neal · Nitarshan Rajkumar · Ethan Caballero · Linbo Wang · Ioannis Mitliagkas · Daniel Roy -
2020 Poster: Pruning neural networks without any data by iteratively conserving synaptic flow »
Hidenori Tanaka · Daniel Kunin · Daniel Yamins · Surya Ganguli -
2019 : Panel Session: A new hope for neuroscience »
Yoshua Bengio · Blake Richards · Timothy Lillicrap · Ila Fiete · David Sussillo · Doina Precup · Konrad Kording · Surya Ganguli -
2019 : Poster Session »
Pravish Sainath · Mohamed Akrout · Charles Delahunt · Nathan Kutz · Guangyu Robert Yang · Joseph Marino · L F Abbott · Nicolas Vecoven · Damien Ernst · andrew warrington · Michael Kagan · Kyunghyun Cho · Kameron Harris · Leopold Grinberg · John J. Hopfield · Dmitry Krotov · Taliah Muhammad · Erick Cobos · Edgar Walker · Jacob Reimer · Andreas Tolias · Alexander Ecker · Janaki Sheth · Yu Zhang · Maciej Wołczyk · Jacek Tabor · Szymon Maszke · Roman Pogodin · Dane Corneil · Wulfram Gerstner · Baihan Lin · Guillermo Cecchi · Jenna M Reinen · Irina Rish · Guillaume Bellec · Darjan Salaj · Anand Subramoney · Wolfgang Maass · Yueqi Wang · Ari Pakman · Jin Hyung Lee · Liam Paninski · Bryan Tripp · Colin Graber · Alex Schwing · Luke Prince · Gabriel Ocker · Michael Buice · Benjamin Lansdell · Konrad Kording · Jack Lindsey · Terrence Sejnowski · Matthew Farrell · Eric Shea-Brown · Nicolas Farrugia · Victor Nepveu · Jiwoong Im · Kristin Branson · Brian Hu · Ramakrishnan Iyer · Stefan Mihalas · Sneha Aenugu · Hananel Hazan · Sihui Dai · Tan Nguyen · Doris Tsao · Richard Baraniuk · Anima Anandkumar · Hidenori Tanaka · Aran Nayebi · Stephen Baccus · Surya Ganguli · Dean Pospisil · Eilif Muller · Jeffrey S Cheng · Gaël Varoquaux · Kamalaker Dadi · Dimitrios C Gklezakos · Rajesh PN Rao · Anand Louis · Christos Papadimitriou · Santosh Vempala · Naganand Yadati · Daniel Zdeblick · Daniela M Witten · Nicholas Roberts · Vinay Prabhu · Pierre Bellec · Poornima Ramesh · Jakob H Macke · Santiago Cadena · Guillaume Bellec · Franz Scherr · Owen Marschall · Robert Kim · Hannes Rapp · Marcio Fonseca · Oliver Armitage · Jiwoong Im · Thomas Hardcastle · Abhishek Sharma · Wyeth Bair · Adrian Valente · Shane Shang · Merav Stern · Rutuja Patil · Peter Wang · Sruthi Gorantla · Peter Stratton · Tristan Edwards · Jialin Lu · Martin Ester · Yurii Vlasov · Siavash Golkar -
2019 : Panel - The Role of Communication at Large: Aparna Lakshmiratan, Jason Yosinski, Been Kim, Surya Ganguli, Finale Doshi-Velez »
Aparna Lakshmiratan · Finale Doshi-Velez · Surya Ganguli · Zachary Lipton · Michela Paganini · Anima Anandkumar · Jason Yosinski -
2019 : Afternoon Coffee Break & Poster Session »
Heidi Komkov · Stanislav Fort · Zhaoyou Wang · Rose Yu · Ji Hwan Park · Samuel Schoenholz · Taoli Cheng · Ryan-Rhys Griffiths · Chase Shimmin · Surya Karthik Mukkavili · Philippe Schwaller · Christian Knoll · Yangzesheng Sun · Keiichi Kisamori · Gavin Graham · Gavin Portwood · Hsin-Yuan Huang · Paul Novello · Moritz Munchmeyer · Anna Jungbluth · Daniel Levine · Ibrahim Ayed · Steven Atkinson · Jan Hermann · Peter Grönquist · · Priyabrata Saha · Yannik Glaser · Lingge Li · Yutaro Iiyama · Rushil Anirudh · Maciej Koch-Janusz · Vikram Sundar · Francois Lanusse · Auralee Edelen · Jonas Köhler · Jacky H. T. Yip · jiadong guo · Xiangyang Ju · Adi Hanuka · Adrian Albert · Valentina Salvatelli · Mauro Verzetti · Javier Duarte · Eric Moreno · Emmanuel de Bézenac · Athanasios Vlontzos · Alok Singh · Thomas Klijnsma · Brad Neuberg · Paul Wright · Mustafa Mustafa · David Schmidt · Steven Farrell · Hao Sun -
2019 : Invited Talk: Theories for the emergence of internal representations in neural networks: from perception to navigation »
Surya Ganguli -
2019 : Lunch break & Poster session »
Breandan Considine · Michael Innes · Du Phan · Dougal Maclaurin · Robin Manhaeve · Alexey Radul · Shashi Gowda · Ekansh Sharma · Eli Sennesh · Maxim Kochurov · Gordon Plotkin · Thomas Wiecki · Navjot Kukreja · Chung-chieh Shan · Matthew Johnson · Dan Belov · Neeraj Pradhan · Wannes Meert · Angelika Kimmig · Luc De Raedt · Brian Patton · Matthew Hoffman · Rif A. Saurous · Daniel Roy · Eli Bingham · Martin Jankowiak · Colin Carroll · Junpeng Lao · Liam Paull · Martin Abadi · Angel Rojas Jimenez · JP Chen -
2019 : Lunch Break and Posters »
Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu -
2019 : Surya Ganguli, Yasaman Bahri, Florent Krzakala moderated by Lenka Zdeborova »
Florent Krzakala · Yasaman Bahri · Surya Ganguli · Lenka Zdeborová · Adji Bousso Dieng · Joan Bruna -
2019 : Surya Ganguli - An analytic theory of generalization dynamics and transfer learning in deep linear networks »
Surya Ganguli -
2019 Workshop: Machine Learning with Guarantees »
Ben London · Gintare Karolina Dziugaite · Daniel Roy · Thorsten Joachims · Aleksander Madry · John Shawe-Taylor -
2019 Poster: Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates »
Jeffrey Negrea · Mahdi Haghifam · Gintare Karolina Dziugaite · Ashish Khisti · Daniel Roy -
2019 Poster: A unified theory for the origin of grid cells through the lens of pattern formation »
Ben Sorscher · Gabriel Mel · Surya Ganguli · Samuel Ocko -
2019 Poster: Universality and individuality in neural dynamics across large populations of recurrent networks »
Niru Maheswaranathan · Alex Williams · Matthew Golub · Surya Ganguli · David Sussillo -
2019 Spotlight: A unified theory for the origin of grid cells through the lens of pattern formation »
Ben Sorscher · Gabriel Mel · Surya Ganguli · Samuel Ocko -
2019 Spotlight: Universality and individuality in neural dynamics across large populations of recurrent networks »
Niru Maheswaranathan · Alex Williams · Matthew Golub · Surya Ganguli · David Sussillo -
2019 Poster: Fast-rate PAC-Bayes Generalization Bounds via Shifted Rademacher Processes »
Jun Yang · Shengyang Sun · Daniel Roy -
2019 Poster: From deep learning to mechanistic understanding in neuroscience: the structure of retinal prediction »
Hidenori Tanaka · Aran Nayebi · Niru Maheswaranathan · Lane McIntosh · Stephen Baccus · Surya Ganguli -
2019 Poster: Large Scale Structure of Neural Network Loss Landscapes »
Stanislav Fort · Stanislaw Jastrzebski -
2019 Poster: Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics »
Niru Maheswaranathan · Alex Williams · Matthew Golub · Surya Ganguli · David Sussillo -
2018 Poster: The emergence of multiple retinal cell types through efficient coding of natural movies »
Samuel Ocko · Jack Lindsey · Surya Ganguli · Stephane Deny -
2018 Poster: Statistical mechanics of low-rank tensor decomposition »
Jonathan Kadmon · Surya Ganguli -
2018 Poster: Data-dependent PAC-Bayes priors via differential privacy »
Gintare Karolina Dziugaite · Daniel Roy -
2018 Poster: Task-Driven Convolutional Recurrent Models of the Visual System »
Aran Nayebi · Daniel Bear · Jonas Kubilius · Kohitij Kar · Surya Ganguli · David Sussillo · James J DiCarlo · Daniel Yamins -
2017 : Daniel Roy - Deep Neural Networks: From Flat Minima to Numerically Nonvacuous Generalization Bounds via PAC-Bayes »
Daniel Roy -
2017 : Poster session 2 and coffee break »
Sean McGregor · Tobias Hagge · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy -
2017 : Poster session 1 and coffee break »
Tobias Hagge · Sean McGregor · Markus Stoye · Trang Thi Minh Pham · Seungkyun Hong · Amir Farbin · Sungyong Seo · Susana Zoghbi · Daniel George · Stanislav Fort · Steven Farrell · Arthur Pajot · Kyle Pearson · Adam McCarthy · Cecile Germain · Dustin Anderson · Mario Lezcano Casado · Mayur Mudigonda · Benjamin Nachman · Luke de Oliveira · Li Jing · Lingge Li · Soo Kyung Kim · Timothy Gebhard · Tom Zahavy -
2017 Poster: Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net »
Anirudh Goyal · Nan Rosemary Ke · Surya Ganguli · Yoshua Bengio -
2017 Poster: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice »
Jeffrey Pennington · Samuel Schoenholz · Surya Ganguli -
2016 : Surya Ganguli : Deep Neural Models of the Retinal Response to Natural Stimuli »
Surya Ganguli -
2016 : Non-convexity in the error landscape and the expressive capacity of deep neural networks »
Surya Ganguli -
2016 Poster: Measuring the reliability of MCMC inference with bidirectional Monte Carlo »
Roger Grosse · Siddharth Ancha · Daniel Roy -
2016 Poster: Exponential expressivity in deep neural networks through transient chaos »
Ben Poole · Subhaneil Lahiri · Maithra Raghu · Jascha Sohl-Dickstein · Surya Ganguli -
2016 Poster: An equivalence between high dimensional Bayes optimal inference and M-estimation »
Madhu Advani · Surya Ganguli -
2016 Poster: Deep Learning Models of the Retinal Response to Natural Scenes »
Lane McIntosh · Niru Maheswaranathan · Aran Nayebi · Surya Ganguli · Stephen Baccus -
2015 Poster: Deep Knowledge Tracing »
Chris Piech · Jonathan Bassen · Jonathan Huang · Surya Ganguli · Mehran Sahami · Leonidas Guibas · Jascha Sohl-Dickstein -
2014 Workshop: 3rd NIPS Workshop on Probabilistic Programming »
Daniel Roy · Josh Tenenbaum · Thomas Dietterich · Stuart J Russell · YI WU · Ulrik R Beierholm · Alp Kucukelbir · Zenna Tavares · Yura Perov · Daniel Lee · Brian Ruttenberg · Sameer Singh · Michael Hughes · Marco Gaboardi · Alexey Radul · Vikash Mansinghka · Frank Wood · Sebastian Riedel · Prakash Panangaden -
2014 Workshop: Deep Learning and Representation Learning »
Andrew Y Ng · Yoshua Bengio · Adam Coates · Roland Memisevic · Sharanyan Chetlur · Geoffrey E Hinton · Shamim Nemati · Bryan Catanzaro · Surya Ganguli · Herbert Jaeger · Phil Blunsom · Leon Bottou · Volodymyr Mnih · Chen-Yu Lee · Rich M Schwartz -
2014 Poster: Gibbs-type Indian Buffet Processes »
Creighton Heaukulani · Daniel Roy -
2014 Poster: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization »
Yann N Dauphin · Razvan Pascanu · Caglar Gulcehre · Kyunghyun Cho · Surya Ganguli · Yoshua Bengio -
2014 Poster: Mondrian Forests: Efficient Online Random Forests »
Balaji Lakshminarayanan · Daniel Roy · Yee Whye Teh -
2013 Poster: A memory frontier for complex synapses »
Subhaneil Lahiri · Surya Ganguli -
2013 Oral: A memory frontier for complex synapses »
Subhaneil Lahiri · Surya Ganguli -
2013 Session: Session Chair »
Daniel Roy -
2013 Session: Tutorial Session B »
Daniel Roy -
2012 Workshop: Probabilistic Programming: Foundations and Applications (2 day) »
Vikash Mansinghka · Daniel Roy · Noah Goodman -
2012 Workshop: Probabilistic Programming: Foundations and Applications (2 day) »
Vikash Mansinghka · Daniel Roy · Noah Goodman -
2012 Poster: Random function priors for exchangeable graphs and arrays »
James R Lloyd · Daniel Roy · Peter Orbanz · Zoubin Ghahramani -
2011 Poster: Complexity of Inference in Latent Dirichlet Allocation »
David Sontag · Daniel Roy -
2011 Spotlight: Complexity of Inference in Latent Dirichlet Allocation »
David Sontag · Daniel Roy -
2010 Poster: Short-term memory in neuronal networks through dynamical compressed sensing »
Surya Ganguli · Haim Sompolinsky -
2008 Workshop: Probabilistic Programming: Universal Languages, Systems and Applications »
Daniel Roy · John Winn · David A McAllester · Vikash Mansinghka · Josh Tenenbaum -
2008 Oral: The Mondrian Process »
Daniel Roy · Yee Whye Teh -
2008 Poster: The Mondrian Process »
Daniel Roy · Yee Whye Teh -
2007 Poster: Bayesian Agglomerative Clustering with Coalescents »
Yee Whye Teh · Hal Daumé III · Daniel Roy -
2007 Oral: Bayesian Agglomerative Clustering with Coalescents »
Yee Whye Teh · Hal Daumé III · Daniel Roy -
2006 Poster: Learning annotated hierarchies from relational data »
Daniel Roy · Charles Kemp · Vikash Mansinghka · Josh Tenenbaum -
2006 Talk: Learning annotated hierarchies from relational data »
Daniel Roy · Charles Kemp · Vikash Mansinghka · Josh Tenenbaum