Timezone: »
We study the problem of learning a linear model to set the reserve price in an auction, given contextual information, in order to maximize expected revenue from the seller side. First, we show that it is not possible to solve this problem in polynomial time unless the Exponential Time Hypothesis fails. Second, we present a strong mixed-integer programming (MIP) formulation for this problem, which is capable of exactly modeling the nonconvex and discontinuous expected reward function. Moreover, we show that this MIP formulation is ideal (i.e. the strongest possible formulation) for the revenue function of a single impression. Since it can be computationally expensive to exactly solve the MIP formulation in practice, we also study the performance of its linear programming (LP) relaxation. Though it may work well in practice, we show that, unfortunately, in the worst case the optimal objective of the LP relaxation can be O(number of samples) times larger than the optimal objective of the true problem. Finally, we present computational results, showcasing that the MIP formulation, along with its LP relaxation, are able to achieve superior in- and out-of-sample performance, as compared to state-of-the-art algorithms on both real and synthetic datasets. More broadly, we believe this work offers an indication of the strength of optimization methodologies like MIP to exactly model intrinsic discontinuities in machine learning problems.
Author Information
Joey Huchette (Rice University)
Haihao Lu (University of Chicago)
Hossein Esfandiari (Google Research)
Vahab Mirrokni (Google Research NYC)
More from the Same Authors
-
2023 Poster: Replicable Clustering »
Hossein Esfandiari · Amin Karbasi · Vahab Mirrokni · Grigoris Velegkas · Felix Zhou -
2023 Poster: Online Ad Procurement in Non-stationary Autobidding Worlds »
Jason Cheuk Nam Liang · Haihao Lu · Baoyu Zhou -
2022 Poster: Anonymous Bandits for Multi-User Systems »
Hossein Esfandiari · Vahab Mirrokni · Jon Schneider -
2021 Poster: Practical Large-Scale Linear Programming using Primal-Dual Hybrid Gradient »
David Applegate · Mateo Diaz · Oliver Hinder · Haihao Lu · Miles Lubin · Brendan O'Donoghue · Warren Schudy -
2020 Poster: Optimal Approximation - Smoothness Tradeoffs for Soft-Max Functions »
Alessandro Epasto · Mohammad Mahdian · Vahab Mirrokni · Emmanouil Zampetakis -
2020 Spotlight: Optimal Approximation - Smoothness Tradeoffs for Soft-Max Functions »
Alessandro Epasto · Mohammad Mahdian · Vahab Mirrokni · Emmanouil Zampetakis -
2020 Poster: Smoothly Bounding User Contributions in Differential Privacy »
Alessandro Epasto · Mohammad Mahdian · Jieming Mao · Vahab Mirrokni · Lijie Ren -
2020 Poster: The Convex Relaxation Barrier, Revisited: Tightened Single-Neuron Relaxations for Neural Network Verification »
Christian Tjandraatmadja · Ross Anderson · Joey Huchette · Will Ma · KRUNAL KISHOR PATEL · Juan Pablo Vielma -
2020 : Clustering At Scale »
Vahab Mirrokni -
2020 Expo Workshop: Mining and Learning with Graphs at Scale »
Vahab Mirrokni · Bryan Perozzi · Jakub Lacki · Jonathan Halcrow · Jaqui C Herman -
2020 : Introduction »
Vahab Mirrokni -
2019 Poster: Contextual Bandits with Cross-Learning »
Santiago Balseiro · Negin Golrezaei · Mohammad Mahdian · Vahab Mirrokni · Jon Schneider -
2019 Poster: Dynamic Incentive-Aware Learning: Robust Pricing in Contextual Auctions »
Negin Golrezaei · Adel Javanmard · Vahab Mirrokni -
2019 Poster: A Robust Non-Clairvoyant Dynamic Mechanism for Contextual Auctions »
Yuan Deng · Sébastien Lahaie · Vahab Mirrokni -
2019 Poster: Locality-Sensitive Hashing for f-Divergences: Mutual Information Loss and Beyond »
Lin Chen · Hossein Esfandiari · Gang Fu · Vahab Mirrokni -
2019 Poster: Variance Reduction in Bipartite Experiments through Correlation Clustering »
Jean Pouget-Abadie · Kevin Aydin · Warren Schudy · Kay Brodersen · Vahab Mirrokni -
2017 Poster: Dynamic Revenue Sharing »
Santiago Balseiro · Max Lin · Vahab Mirrokni · Renato Leme · IIIS Song Zuo -
2017 Poster: Affinity Clustering: Hierarchical Clustering at Scale »
Mohammadhossein Bateni · Soheil Behnezhad · Mahsa Derakhshan · MohammadTaghi Hajiaghayi · Raimondas Kiveris · Silvio Lattanzi · Vahab Mirrokni -
2016 Poster: Bi-Objective Online Matching and Submodular Allocations »
Hossein Esfandiari · Nitish Korula · Vahab Mirrokni -
2016 Poster: Linear Relaxations for Finding Diverse Elements in Metric Spaces »
Aditya Bhaskara · Mehrdad Ghadiri · Vahab Mirrokni · Ola Svensson -
2014 Poster: Distributed Balanced Clustering via Mapping Coresets »
Mohammadhossein Bateni · Aditya Bhaskara · Silvio Lattanzi · Vahab Mirrokni