Timezone: »
Recently there has been a surge of interest in understanding implicit regularization properties of iterative gradient-based optimization algorithms. In this paper, we study the statistical guarantees on the excess risk achieved by early-stopped unconstrained mirror descent algorithms applied to the unregularized empirical risk with the squared loss for linear models and kernel methods. By completing an inequality that characterizes convexity for the squared loss, we identify an intrinsic link between offset Rademacher complexities and potential-based convergence analysis of mirror descent methods. Our observation immediately yields excess risk guarantees for the path traced by the iterates of mirror descent in terms of offset complexities of certain function classes depending only on the choice of the mirror map, initialization point, step-size, and the number of iterations. We apply our theory to recover, in a rather clean and elegant manner via rather short proofs, some of the recent results in the implicit regularization literature, while also showing how to improve upon them in some settings.
Author Information
Tomas Vaskevicius (University of Oxford)
Varun Kanade (University of Oxford)
Patrick Rebeschini (University of Oxford)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: The Statistical Complexity of Early-Stopped Mirror Descent »
Thu. Dec 10th 05:00 -- 07:00 PM Room Poster Session 5 #1394
More from the Same Authors
-
2021 Spotlight: Towards optimally abstaining from prediction with OOD test examples »
Adam Kalai · Varun Kanade -
2022 : When are Local Queries Useful for Robust Learning? »
Pascale Gourdeau · Varun Kanade · Marta Kwiatkowska · James Worrell -
2023 Poster: A Novel Framework for Policy Mirror Descent with General Parametrization and Linear Convergence »
Carlo Alfano · Rui Yuan · Patrick Rebeschini -
2023 Poster: Partial Matrix Completion »
Elad Hazan · Adam Tauman Kalai · Varun Kanade · Clara Mohri · Y. Jennifer Sun -
2023 Poster: Optimal Convergence Rate for Exact Policy Mirror Descent in Discounted Markov Decision Processes »
Emmeran Johnson · Ciara Pike-Burke · Patrick Rebeschini -
2023 Poster: Computational Guarantees for Doubly Entropic Wasserstein Barycenters »
Lénaïc Chizat · Tomas Vaskevicius -
2022 Poster: When are Local Queries Useful for Robust Learning? »
Pascale Gourdeau · Varun Kanade · Marta Kwiatkowska · James Worrell -
2021 Poster: Implicit Regularization in Matrix Sensing via Mirror Descent »
Fan Wu · Patrick Rebeschini -
2021 Poster: Distributed Machine Learning with Sparse Heterogeneous Data »
Dominic Richards · Sahand Negahban · Patrick Rebeschini -
2021 Poster: Towards optimally abstaining from prediction with OOD test examples »
Adam Kalai · Varun Kanade -
2021 Poster: Time-independent Generalization Bounds for SGLD in Non-convex Settings »
Tyler Farghly · Patrick Rebeschini -
2021 Poster: On Optimal Interpolation in Linear Regression »
Eduard Oravkin · Patrick Rebeschini -
2020 Poster: A Continuous-Time Mirror Descent Approach to Sparse Phase Retrieval »
Fan Wu · Patrick Rebeschini -
2020 Spotlight: A Continuous-Time Mirror Descent Approach to Sparse Phase Retrieval »
Fan Wu · Patrick Rebeschini -
2019 Poster: Implicit Regularization for Optimal Sparse Recovery »
Tomas Vaskevicius · Varun Kanade · Patrick Rebeschini -
2019 Poster: Optimal Statistical Rates for Decentralised Non-Parametric Regression with Linear Speed-Up »
Dominic Richards · Patrick Rebeschini -
2019 Poster: Decentralized Cooperative Stochastic Bandits »
David Martínez-Rubio · Varun Kanade · Patrick Rebeschini -
2018 Poster: Clustering Redemption–Beyond the Impossibility of Kleinberg’s Axioms »
Vincent Cohen-Addad · Varun Kanade · Frederik Mallmann-Trenn -
2017 Poster: Hierarchical Clustering Beyond the Worst-Case »
Vincent Cohen-Addad · Varun Kanade · Frederik Mallmann-Trenn -
2017 Poster: Accelerated consensus via Min-Sum Splitting »
Patrick Rebeschini · Sekhar C Tatikonda -
2017 Poster: From which world is your graph »
Cheng Li · Felix MF Wong · Zhenming Liu · Varun Kanade