Timezone: »
Macroscopic data aggregated from microscopic events are pervasive in machine learning, such as country-level COVID-19 infection statistics based on city-level data. Yet, many existing approaches for predicting macroscopic behavior only use aggregated data, leaving a large amount of fine-grained microscopic information unused. In this paper, we propose a principled optimization framework for macroscopic prediction by fitting microscopic models based on conditional stochastic optimization. The framework leverages both macroscopic and microscopic information, and adapts to individual microscopic models involved in the aggregation. In addition, we propose efficient learning algorithms with convergence guarantees. In our experiments, we show that the proposed learning framework clearly outperforms other plug-in supervised learning approaches in real-world applications, including the prediction of daily infections of COVID-19 and medicare claims.
Author Information
Yingxiang Yang (ByteDance)
Negar Kiyavash (École Polytechnique Fédérale de Lausanne)
Le Song (Georgia Institute of Technology)
Niao He (ETH Zurich)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Spotlight: The Devil is in the Detail: A Framework for Macroscopic Prediction via Microscopic Models »
Tue. Dec 8th 04:10 -- 04:20 AM Room Orals & Spotlights: COVID/Health/Bio Applications
More from the Same Authors
-
2021 : Scallop: From Probabilistic Deductive Databases to Scalable Differentiable Reasoning »
Jiani Huang · Ziyang Li · Binghong Chen · Karan Samel · Mayur Naik · Le Song · Xujie Si -
2021 : Large Scale Coordination Transfer for Cooperative Multi-Agent Reinforcement Learning »
Ethan Wang · Binghong Chen · Le Song -
2023 Poster: Causal Effect Identification in Uncertain Causal Networks »
Sina Akbari · Fateme Jamshidi · Ehsan Mokhtarian · Matthew Vowels · Jalal Etesami · Negar Kiyavash -
2023 Poster: xTrimoGene: An Efficient and Scalable Representation Learner for Single-Cell RNA-Seq Data »
Jing Gong · Minsheng Hao · Xin Zeng · Chiming Liu · Jianzhu Ma · Xingyi Cheng · Taifeng Wang · Xuegong Zhang · Le Song -
2023 Poster: Injecting Multimodal Information into Rigid Protein Docking via Bi-level Optimization »
Ruijia Wang · YiWu Sun · Yujie Luo · Cheng Yang · Shaochuan Li · Xingyi Cheng · Hui Li · Chuan Shi · Le Song -
2023 Poster: Causal Imitability Under Context-Specific Independence Relations »
Fateme Jamshidi · Sina Akbari · Negar Kiyavash -
2023 Poster: A Cross-Moment Approach for Causal Effect Estimation »
Yaroslav Kivva · Saber Salehkaleybar · Negar Kiyavash -
2022 Poster: Sharp Analysis of Stochastic Optimization under Global Kurdyka-Lojasiewicz Inequality »
Ilyas Fatkhullin · Jalal Etesami · Niao He · Negar Kiyavash -
2022 Poster: Causal Discovery in Linear Latent Variable Models Subject to Measurement Error »
Yuqin Yang · AmirEmad Ghassami · Mohamed Nafea · Negar Kiyavash · Kun Zhang · Ilya Shpitser -
2022 Poster: Uncovering the Structural Fairness in Graph Contrastive Learning »
Ruijia Wang · Xiao Wang · Chuan Shi · Le Song -
2022 Poster: Stochastic Second-Order Methods Improve Best-Known Sample Complexity of SGD for Gradient-Dominated Functions »
Saeed Masiha · Saber Salehkaleybar · Niao He · Negar Kiyavash · Patrick Thiran -
2021 Poster: A Biased Graph Neural Network Sampler with Near-Optimal Regret »
Qingru Zhang · David Wipf · Quan Gan · Le Song -
2021 Poster: Locality Sensitive Teaching »
Zhaozhuo Xu · Beidi Chen · Chaojian Li · Weiyang Liu · Le Song · Yingyan Lin · Anshumali Shrivastava -
2021 Poster: Multi-task Learning of Order-Consistent Causal Graphs »
Xinshi Chen · Haoran Sun · Caleb Ellington · Eric Xing · Le Song -
2021 Poster: RoMA: Robust Model Adaptation for Offline Model-based Optimization »
Sihyun Yu · Sungsoo Ahn · Le Song · Jinwoo Shin -
2021 Poster: Recursive Causal Structure Learning in the Presence of Latent Variables and Selection Bias »
Sina Akbari · Ehsan Mokhtarian · AmirEmad Ghassami · Negar Kiyavash -
2021 Poster: On the Bias-Variance-Cost Tradeoff of Stochastic Optimization »
Yifan Hu · Xin Chen · Niao He -
2021 Poster: Scallop: From Probabilistic Deductive Databases to Scalable Differentiable Reasoning »
Jiani Huang · Ziyang Li · Binghong Chen · Karan Samel · Mayur Naik · Le Song · Xujie Si -
2020 Poster: Understanding Deep Architecture with Reasoning Layer »
Xinshi Chen · Yufei Zhang · Christoph Reisinger · Le Song -
2020 Poster: Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning »
Yifan Hu · Siqi Zhang · Xin Chen · Niao He -
2020 Poster: A Catalyst Framework for Minimax Optimization »
Junchi Yang · Siqi Zhang · Negar Kiyavash · Niao He -
2020 Poster: Global Convergence and Variance Reduction for a Class of Nonconvex-Nonconcave Minimax Problems »
Junchi Yang · Negar Kiyavash · Niao He -
2020 Poster: A Unified Switching System Perspective and Convergence Analysis of Q-Learning Algorithms »
Donghwan Lee · Niao He -
2020 Poster: The Mean-Squared Error of Double Q-Learning »
Wentao Weng · Harsh Gupta · Niao He · Lei Ying · R. Srikant -
2019 Workshop: Learning with Temporal Point Processes »
Manuel Rodriguez · Le Song · Isabel Valera · Yan Liu · Abir De · Hongyuan Zha -
2019 Poster: Neural Similarity Learning »
Weiyang Liu · Zhen Liu · James Rehg · Le Song -
2019 Poster: Meta Architecture Search »
Albert Shaw · Wei Wei · Weiyang Liu · Le Song · Bo Dai -
2019 Poster: Exponential Family Estimation via Adversarial Dynamics Embedding »
Bo Dai · Zhen Liu · Hanjun Dai · Niao He · Arthur Gretton · Le Song · Dale Schuurmans -
2019 Poster: Retrosynthesis Prediction with Conditional Graph Logic Network »
Hanjun Dai · Chengtao Li · Connor Coley · Bo Dai · Le Song -
2019 Poster: Learning Positive Functions with Pseudo Mirror Descent »
Yingxiang Yang · Haoxiang Wang · Negar Kiyavash · Niao He -
2019 Spotlight: Learning Positive Functions with Pseudo Mirror Descent »
Yingxiang Yang · Haoxiang Wang · Negar Kiyavash · Niao He -
2018 Poster: Learning Loop Invariants for Program Verification »
Xujie Si · Hanjun Dai · Mukund Raghothaman · Mayur Naik · Le Song -
2018 Spotlight: Learning Loop Invariants for Program Verification »
Xujie Si · Hanjun Dai · Mukund Raghothaman · Mayur Naik · Le Song -
2018 Poster: Coupled Variational Bayes via Optimization Embedding »
Bo Dai · Hanjun Dai · Niao He · Weiyang Liu · Zhen Liu · Jianshu Chen · Lin Xiao · Le Song -
2018 Poster: Predictive Approximate Bayesian Computation via Saddle Points »
Yingxiang Yang · Bo Dai · Negar Kiyavash · Niao He -
2018 Poster: Learning Temporal Point Processes via Reinforcement Learning »
Shuang Li · Shuai Xiao · Shixiang Zhu · Nan Du · Yao Xie · Le Song -
2018 Spotlight: Learning Temporal Point Processes via Reinforcement Learning »
Shuang Li · Shuai Xiao · Shixiang Zhu · Nan Du · Yao Xie · Le Song -
2018 Poster: Learning towards Minimum Hyperspherical Energy »
Weiyang Liu · Rongmei Lin · Zhen Liu · Lixin Liu · Zhiding Yu · Bo Dai · Le Song -
2017 : Learning from Conditional Distributions via Dual Embeddings (poster). »
Le Song -
2017 Poster: Predicting User Activity Level In Point Processes With Mass Transport Equation »
Yichen Wang · Xiaojing Ye · Hongyuan Zha · Le Song -
2017 Poster: Online Learning for Multivariate Hawkes Processes »
Yingxiang Yang · Jalal Etesami · Niao He · Negar Kiyavash -
2017 Poster: Learning Combinatorial Optimization Algorithms over Graphs »
Elias Khalil · Hanjun Dai · Yuyu Zhang · Bistra Dilkina · Le Song -
2017 Spotlight: Learning Combinatorial Optimization Algorithms over Graphs »
Elias Khalil · Hanjun Dai · Yuyu Zhang · Bistra Dilkina · Le Song -
2017 Poster: Deep Hyperspherical Learning »
Weiyang Liu · Yan-Ming Zhang · Xingguo Li · Zhiding Yu · Bo Dai · Tuo Zhao · Le Song -
2017 Poster: On the Complexity of Learning Neural Networks »
Le Song · Santosh Vempala · John Wilmes · Bo Xie -
2017 Spotlight: Deep Hyperspherical Learning »
Weiyang Liu · Yan-Ming Zhang · Xingguo Li · Zhiding Yu · Bo Dai · Tuo Zhao · Le Song -
2017 Spotlight: On the Complexity of Learning Neural Networks »
Le Song · Santosh Vempala · John Wilmes · Bo Xie -
2017 Poster: Wasserstein Learning of Deep Generative Point Process Models »
Shuai Xiao · Mehrdad Farajtabar · Xiaojing Ye · Junchi Yan · Xiaokang Yang · Le Song · Hongyuan Zha -
2016 Poster: Multistage Campaigning in Social Networks »
Mehrdad Farajtabar · Xiaojing Ye · Sahar Harati · Le Song · Hongyuan Zha -
2016 Poster: Coevolutionary Latent Feature Processes for Continuous-Time User-Item Interactions »
Yichen Wang · Nan Du · Rakshit Trivedi · Le Song -
2015 Poster: Time-Sensitive Recommendation From Recurrent User Activities »
Nan Du · Yichen Wang · Niao He · Jimeng Sun · Le Song -
2015 Poster: Scale Up Nonlinear Component Analysis with Doubly Stochastic Gradients »
Bo Xie · Yingyu Liang · Le Song -
2015 Poster: Efficient Learning of Continuous-Time Hidden Markov Models for Disease Progression »
Yu-Ying Liu · Shuang Li · Fuxin Li · Le Song · James Rehg -
2015 Poster: COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution »
Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song -
2015 Oral: COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution »
Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song -
2015 Poster: M-Statistic for Kernel Change-Point Detection »
Shuang Li · Yao Xie · Hanjun Dai · Le Song -
2014 Poster: Active Learning and Best-Response Dynamics »
Maria-Florina F Balcan · Christopher Berlind · Avrim Blum · Emma Cohen · Kaushik Patnaik · Le Song -
2014 Poster: Learning Time-Varying Coverage Functions »
Nan Du · Yingyu Liang · Maria-Florina F Balcan · Le Song -
2014 Poster: Shaping Social Activity by Incentivizing Users »
Mehrdad Farajtabar · Nan Du · Manuel Gomez Rodriguez · Isabel Valera · Hongyuan Zha · Le Song -
2014 Poster: Scalable Kernel Methods via Doubly Stochastic Gradients »
Bo Dai · Bo Xie · Niao He · Yingyu Liang · Anant Raj · Maria-Florina F Balcan · Le Song -
2013 Poster: Robust Low Rank Kernel Embeddings of Multivariate Distributions »
Le Song · Bo Dai -
2013 Poster: Scalable Influence Estimation in Continuous-Time Diffusion Networks »
Nan Du · Le Song · Manuel Gomez Rodriguez · Hongyuan Zha -
2013 Oral: Scalable Influence Estimation in Continuous-Time Diffusion Networks »
Nan Du · Le Song · Manuel Gomez Rodriguez · Hongyuan Zha -
2012 Workshop: Confluence between Kernel Methods and Graphical Models »
Le Song · Arthur Gretton · Alexander Smola -
2012 Workshop: Spectral Algorithms for Latent Variable Models »
Ankur P Parikh · Le Song · Eric Xing -
2012 Poster: Learning Networks of Heterogeneous Influence »
Nan Du · Le Song · Alexander Smola · Ming Yuan -
2012 Spotlight: Learning Networks of Heterogeneous Influence »
Nan Du · Le Song · Alexander Smola · Ming Yuan