Timezone: »
On-device learning promises collaborative training of machine learning models across edge devices without the sharing of user data. In state-of-the-art on-device learning algorithms, devices communicate their model weights over a decentralized communication network. Transmitting model weights requires huge communication overhead and means only devices with identical model architectures can be included. To overcome these limitations, we introduce a distributed distillation algorithm where devices communicate and learn from soft-decision (softmax) outputs, which are inherently architecture-agnostic and scale only with the number of classes. The communicated soft-decisions are each model's outputs on a public, unlabeled reference dataset, which serves as a common vocabulary between devices. We prove that the gradients of the distillation regularized loss functions of all devices converge to zero with probability 1. Hence, all devices distill the entire knowledge of all other devices on the reference data, regardless of their local connections. Our analysis assumes smooth loss functions, which can be non-convex. Simulations support our theoretical findings and show that even a naive implementation of our algorithm significantly reduces the communication overhead while achieving an overall comparable accuracy to the state-of-the-art. By requiring little communication overhead and allowing for cross-architecture training, we remove two main obstacles to scaling on-device learning.
Author Information
Ilai Bistritz (Stanford)
Ariana Mann (Stanford University)
Nicholas Bambos (Stanford University)
More from the Same Authors
-
2022 Poster: Queue Up Your Regrets: Achieving the Dynamic Capacity Region of Multiplayer Bandits »
Ilai Bistritz · Nicholas Bambos -
2020 Poster: Cooperative Multi-player Bandit Optimization »
Ilai Bistritz · Nicholas Bambos -
2019 Poster: Online EXP3 Learning in Adversarial Bandits with Delayed Feedback »
Ilai Bistritz · Zhengyuan Zhou · Xi Chen · Nicholas Bambos · Jose Blanchet -
2018 Poster: Distributed Multi-Player Bandits - a Game of Thrones Approach »
Ilai Bistritz · Amir Leshem -
2018 Poster: Learning in Games with Lossy Feedback »
Zhengyuan Zhou · Panayotis Mertikopoulos · Susan Athey · Nicholas Bambos · Peter W Glynn · Yinyu Ye -
2017 Poster: Countering Feedback Delays in Multi-Agent Learning »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Peter W Glynn · Claire Tomlin -
2017 Poster: Stochastic Mirror Descent in Variationally Coherent Optimization Problems »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Stephen Boyd · Peter W Glynn