Timezone: »
In images of complex scenes, objects are often occluding each other which makes perception tasks such as object detection and tracking, or robotic control tasks such as planning, challenging. To facilitate downstream tasks, it is thus important to reason about the full extent of objects, i.e., seeing behind occlusion, typically referred to as amodal instance completion. In this paper, we propose a variational generative framework for amodal completion, referred to as AMODAL-VAE, which does not require any amodal labels at training time, as it is able to utilize widely available object instance masks. We showcase our approach on the downstream task of scene editing where the user is presented with interactive tools to complete and erase objects in photographs. Experiments on complex street scenes demonstrate state-of-the-art performance in amodal mask completion and showcase high-quality scene editing results. Interestingly, a user study shows that humans prefer object completions inferred by our model to the human-labeled ones.
Author Information
Huan Ling (University of Toronto, NVIDIA)
David Acuna (University of Toronto, Nvidia, Vector Institute)
Karsten Kreis (NVIDIA)
Seung Wook Kim (University of Toronto)
Sanja Fidler (University of Toronto)
More from the Same Authors
-
2020 : Differentially Private Generative Models Through Optimal Transport »
Karsten Kreis -
2022 : Latent Space Diffusion Models of Cryo-EM Structures »
Karsten Kreis · Tim Dockhorn · Zihao Li · Ellen Zhong -
2022 : How many trained neural networks are needed for influence estimation in modern deep learning? »
Sasha (Alexandre) Doubov · Tianshi Cao · David Acuna · Sanja Fidler -
2022 : Latent Space Diffusion Models of Cryo-EM Structures »
Karsten Kreis · Tim Dockhorn · Zihao Li · Ellen Zhong -
2022 : Invited talk: Karsten Kreis »
Karsten Kreis -
2021 Poster: Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis »
Tianchang Shen · Jun Gao · Kangxue Yin · Ming-Yu Liu · Sanja Fidler -
2021 Poster: Scalable Neural Data Server: A Data Recommender for Transfer Learning »
Tianshi Cao · Sasha (Alexandre) Doubov · David Acuna · Sanja Fidler -
2021 Poster: DIB-R++: Learning to Predict Lighting and Material with a Hybrid Differentiable Renderer »
Wenzheng Chen · Joey Litalien · Jun Gao · Zian Wang · Clement Fuji Tsang · Sameh Khamis · Or Litany · Sanja Fidler -
2021 Poster: EditGAN: High-Precision Semantic Image Editing »
Huan Ling · Karsten Kreis · Daiqing Li · Seung Wook Kim · Antonio Torralba · Sanja Fidler -
2021 Poster: Score-based Generative Modeling in Latent Space »
Arash Vahdat · Karsten Kreis · Jan Kautz -
2021 Poster: ATISS: Autoregressive Transformers for Indoor Scene Synthesis »
Despoina Paschalidou · Amlan Kar · Maria Shugrina · Karsten Kreis · Andreas Geiger · Sanja Fidler -
2021 Poster: Don’t Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence »
Tianshi Cao · Alex Bie · Arash Vahdat · Sanja Fidler · Karsten Kreis -
2021 Poster: Towards Optimal Strategies for Training Self-Driving Perception Models in Simulation »
David Acuna · Jonah Philion · Sanja Fidler -
2020 : Sanja Fidler »
Sanja Fidler -
2020 Poster: Learning Deformable Tetrahedral Meshes for 3D Reconstruction »
Jun Gao · Wenzheng Chen · Tommy Xiang · Alec Jacobson · Morgan McGuire · Sanja Fidler -
2019 : Carl Doersch, Raquel Urtasun, Sanja Fidler moderated by Natalia Neverova »
Raquel Urtasun · Sanja Fidler · Natalia Neverova · Ilija Radosavovic · Carl Doersch -
2019 : Sanja Fidler - TBA »
Sanja Fidler -
2019 : Panel »
Sanja Fidler · Josh Tenenbaum · Tatiana López-Guevara · Danilo Jimenez Rezende · Niloy Mitra -
2019 : Sanja Fidler »
Sanja Fidler -
2019 Poster: Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer »
Wenzheng Chen · Huan Ling · Jun Gao · Edward Smith · Jaakko Lehtinen · Alec Jacobson · Sanja Fidler -
2019 Demonstration: Toronto Annotation Suite »
Amlan Kar · Sanja Fidler · Jun Gao · Seung Wook Kim · Huan Ling -
2018 : Poster Sessions and Lunch (Provided) »
Akira Utsumi · Alane Suhr · Ji Zhang · Ramon Sanabria · Kushal Kafle · Nicholas Chen · Seung Wook Kim · Aishwarya Agrawal · SRI HARSHA DUMPALA · Shikhar Murty · Pablo Azagra · Jean ROUAT · Alaaeldin Ali · · SUBBAREDDY OOTA · Angela Lin · Shruti Palaskar · Farley Lai · Amir Aly · Tingke Shen · Dianqi Li · Jianguo Zhang · Rita Kuznetsova · Jinwon An · Jean-Benoit Delbrouck · Tomasz Kornuta · Syed Ashar Javed · Christopher Davis · John Co-Reyes · Vasu Sharma · Sungwon Lyu · Ning Xie · Ankita Kalra · Huan Ling · Oleksandr Maksymets · Bhavana Mahendra Jain · Shun-Po Chuang · Sanyam Agarwal · Jerome Abdelnour · Yufei Feng · vincent albouy · Siddharth Karamcheti · Derek Doran · Roberta Raileanu · Jonathan Heek -
2018 Poster: A Neural Compositional Paradigm for Image Captioning »
Bo Dai · Sanja Fidler · Dahua Lin -
2017 : Panel Discussion »
Felix Hill · Olivier Pietquin · Jack Gallant · Raymond Mooney · Sanja Fidler · Chen Yu · Devi Parikh -
2017 : Connecting high-level semantics with low-level vision »
Sanja Fidler -
2017 Poster: Teaching Machines to Describe Images with Natural Language Feedback »
Huan Ling · Sanja Fidler -
2016 Poster: Proximal Deep Structured Models »
Shenlong Wang · Sanja Fidler · Raquel Urtasun -
2015 Poster: Skip-Thought Vectors »
Jamie Kiros · Yukun Zhu · Russ Salakhutdinov · Richard Zemel · Raquel Urtasun · Antonio Torralba · Sanja Fidler -
2015 Poster: 3D Object Proposals for Accurate Object Class Detection »
Xiaozhi Chen · Kaustav Kundu · Yukun Zhu · Andrew G Berneshawi · Huimin Ma · Sanja Fidler · Raquel Urtasun -
2012 Poster: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Sanja Fidler · Sven Dickinson · Raquel Urtasun -
2012 Spotlight: 3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model »
Sanja Fidler · Sven Dickinson · Raquel Urtasun -
2009 Poster: Evaluating multi-class learning strategies in a generative hierarchical framework for object detection »
Sanja Fidler · Marko Boben · Ales Leonardis