Timezone: »
We propose the Gaussian Gated Linear Network (G-GLN), an extension to the recently proposed GLN family of deep neural networks. Instead of using backpropagation to learn features, GLNs have a distributed and local credit assignment mechanism based on optimizing a convex objective. This gives rise to many desirable properties including universality, data-efficient online learning, trivial interpretability and robustness to catastrophic forgetting. We extend the GLN framework from classification to multiple regression and density modelling by generalizing geometric mixing to a product of Gaussian densities. The G-GLN achieves competitive or state-of-the-art performance on several univariate and multivariate regression benchmarks, and we demonstrate its applicability to practical tasks including online contextual bandits and density estimation via denoising.
Author Information
David Budden (DeepMind)
Adam Marblestone
Eren Sezener (DeepMind)
Tor Lattimore (DeepMind)
Gregory Wayne (Google DeepMind)
Joel Veness (Deepmind)
More from the Same Authors
-
2021 Spotlight: Variational Bayesian Optimistic Sampling »
Brendan O'Donoghue · Tor Lattimore -
2021 Spotlight: Information Directed Sampling for Sparse Linear Bandits »
Botao Hao · Tor Lattimore · Wei Deng -
2023 Poster: Would I have gotten that reward? Long-term credit assignment by counterfactual contribution analysis »
Alexander Meulemans · Simon Schug · Seijin Kobayashi · nathaniel daw · Gregory Wayne -
2023 Poster: Self-Predictive Universal AI »
Elliot Catt · Jordi Grau-Moya · Marcus Hutter · Matthew Aitchison · Tim Genewein · Grégoire Delétang · Li Kevin Wenliang · Joel Veness -
2022 Poster: Intra-agent speech permits zero-shot task acquisition »
Chen Yan · Federico Carnevale · Petko I Georgiev · Adam Santoro · Aurelia Guy · Alistair Muldal · Chia-Chun Hung · Joshua Abramson · Timothy Lillicrap · Gregory Wayne -
2021 Poster: Variational Bayesian Optimistic Sampling »
Brendan O'Donoghue · Tor Lattimore -
2021 Poster: Information Directed Sampling for Sparse Linear Bandits »
Botao Hao · Tor Lattimore · Wei Deng -
2021 Poster: Bandit Phase Retrieval »
Tor Lattimore · Botao Hao -
2020 Poster: High-Dimensional Sparse Linear Bandits »
Botao Hao · Tor Lattimore · Mengdi Wang -
2020 Poster: Model Selection in Contextual Stochastic Bandit Problems »
Aldo Pacchiano · My Phan · Yasin Abbasi Yadkori · Anup Rao · Julian Zimmert · Tor Lattimore · Csaba Szepesvari -
2020 Poster: Modular Meta-Learning with Shrinkage »
Yutian Chen · Abram Friesen · Feryal Behbahani · Arnaud Doucet · David Budden · Matthew Hoffman · Nando de Freitas -
2020 Spotlight: Modular Meta-Learning with Shrinkage »
Yutian Chen · Abram Friesen · Feryal Behbahani · Arnaud Doucet · David Budden · Matthew Hoffman · Nando de Freitas -
2020 Poster: A Combinatorial Perspective on Transfer Learning »
Jianan Wang · Eren Sezener · David Budden · Marcus Hutter · Joel Veness -
2020 Poster: Online Learning in Contextual Bandits using Gated Linear Networks »
Eren Sezener · Marcus Hutter · David Budden · Jianan Wang · Joel Veness -
2019 Poster: A Geometric Perspective on Optimal Representations for Reinforcement Learning »
Marc Bellemare · Will Dabney · Robert Dadashi · Adrien Ali Taiga · Pablo Samuel Castro · Nicolas Le Roux · Dale Schuurmans · Tor Lattimore · Clare Lyle -
2019 Poster: Interval timing in deep reinforcement learning agents »
Ben Deverett · Ryan Faulkner · Meire Fortunato · Gregory Wayne · Joel Leibo -
2019 Poster: Experience Replay for Continual Learning »
David Rolnick · Arun Ahuja · Jonathan Richard Schwarz · Timothy Lillicrap · Gregory Wayne -
2019 Poster: Connections Between Mirror Descent, Thompson Sampling and the Information Ratio »
Julian Zimmert · Tor Lattimore -
2019 Poster: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2019 Spotlight: Hindsight Credit Assignment »
Anna Harutyunyan · Will Dabney · Thomas Mesnard · Mohammad Gheshlaghi Azar · Bilal Piot · Nicolas Heess · Hado van Hasselt · Gregory Wayne · Satinder Singh · Doina Precup · Remi Munos -
2018 Poster: Playing hard exploration games by watching YouTube »
Yusuf Aytar · Tobias Pfaff · David Budden · Thomas Paine · Ziyu Wang · Nando de Freitas -
2018 Spotlight: Playing hard exploration games by watching YouTube »
Yusuf Aytar · Tobias Pfaff · David Budden · Thomas Paine · Ziyu Wang · Nando de Freitas -
2018 Poster: Learning Attractor Dynamics for Generative Memory »
Yan Wu · Gregory Wayne · Karol Gregor · Timothy Lillicrap -
2017 Poster: Robust Imitation of Diverse Behaviors »
Ziyu Wang · Josh Merel · Scott Reed · Nando de Freitas · Gregory Wayne · Nicolas Heess -
2016 : Summary/Goodbye »
Tarek R. Besold · Artur Garcez · Antoine Bordes · Gregory Wayne -
2016 : Welcome/Opening »
Tarek R. Besold · Antoine Bordes · Gregory Wayne · Artur Garcez -
2016 Workshop: Cognitive Computation: Integrating Neural and Symbolic Approaches »
Tarek R. Besold · Antoine Bordes · Gregory Wayne · Artur Garcez -
2016 Poster: Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes »
Jack Rae · Jonathan J Hunt · Ivo Danihelka · Tim Harley · Andrew Senior · Gregory Wayne · Alex Graves · Timothy Lillicrap -
2015 : Discussion Panel with Afternoon Speakers (Day 1) »
Ramanathan Guha · Antoine Bordes · Gregory Wayne -
2015 : How Can We Direct Our Agents? »
Gregory Wayne -
2015 Poster: Learning Continuous Control Policies by Stochastic Value Gradients »
Nicolas Heess · Gregory Wayne · David Silver · Timothy Lillicrap · Tom Erez · Yuval Tassa