Timezone: »

CSER: Communication-efficient SGD with Error Reset
Cong Xie · Shuai Zheng · Sanmi Koyejo · Indranil Gupta · Mu Li · Haibin Lin

Wed Dec 09 09:00 AM -- 11:00 AM (PST) @ Poster Session 3 #1130
The scalability of Distributed Stochastic Gradient Descent (SGD) is today limited by communication bottlenecks. We propose a novel SGD variant: \underline{C}ommunication-efficient \underline{S}GD with \underline{E}rror \underline{R}eset, or \underline{CSER}. The key idea in CSER is first a new technique called ``error reset'' that adapts arbitrary compressors for SGD, producing bifurcated local models with periodic reset of resulting local residual errors. Second we introduce partial synchronization for both the gradients and the models, leveraging advantages from them. We prove the convergence of CSER for smooth non-convex problems. Empirical results show that when combined with highly aggressive compressors, the CSER algorithms accelerate the distributed training by nearly $10\times$ for CIFAR-100, and by $4.5\times$ for ImageNet.

Author Information

Cong Xie (University of Illinois Urbana-Champaign)
Shuai Zheng (Amazon Web Services)
Sanmi Koyejo (Illinois / Google)

Sanmi (Oluwasanmi) Koyejo an Assistant Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Koyejo's research interests are in the development and analysis of probabilistic and statistical machine learning techniques motivated by, and applied to various modern big data problems. He is particularly interested in the analysis of large scale neuroimaging data. Koyejo completed his Ph.D in Electrical Engineering at the University of Texas at Austin advised by Joydeep Ghosh, and completed postdoctoral research at Stanford University with a focus on developing Machine learning techniques for neuroimaging data. His postdoctoral research was primarily with Russell A. Poldrack and Pradeep Ravikumar. Koyejo has been the recipient of several awards including the outstanding NCE/ECE student award, a best student paper award from the conference on uncertainty in artificial intelligence (UAI) and a trainee award from the Organization for Human Brain Mapping (OHBM).

Indranil Gupta (UIUC)
Mu Li (Amazon)
Haibin Lin (Amazon Web Services)

More from the Same Authors